105 research outputs found

    Treatment of wastewater from petroleum industry: current practices and perspectives

    Full text link
    © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Petroleum industry is one of the fastest growing industries, and it significantly contributes to economic growth in developing countries like India. The wastewater from a petroleum industry consist a wide variety of pollutants like petroleum hydrocarbons, mercaptans, oil and grease, phenol, ammonia, sulfide, and other organic compounds. All these compounds are present as very complex form in discharged water of petroleum industry, which are harmful for environment directly or indirectly. Some of the techniques used to treat oily waste/wastewater are membrane technology, photocatalytic degradation, advanced oxidation process, electrochemical catalysis, etc. In this review paper, we aim to discuss past and present scenario of using various treatment technologies for treatment of petroleum industry waste/wastewater. The treatment of petroleum industry wastewater involves physical, chemical, and biological processes. This review also provides scientific literature on knowledge gaps and future research directions to evaluate the effect(s) of various treatment technologies available

    Microbial Fingerprinting of Potential Biodegrading Organisms

    Full text link
    © 2019, Springer Nature Switzerland AG. The world is witnessing various pollutants in the environment since the last few decades that threaten human life. The biological responses to various pollutants show variations as the living system behaves differently in their sensitivities to the same types of pollutants. The relative response and activity depend upon the duration of exposure to the specific pollutant. It is impossible to stop various activities leading to environmental pollution; however, pollutants can be eliminated from the environment using the microorganisms. Application of biological processes can be executed in order to get rid of toxic pollutants through their biodegradation. The pollutants like hydrocarbons, heavy metals, chlorinated hydrocarbons, nitro-aromatic compounds, non-chlorinated herbicides and pesticides, organophosphates, radionuclides can lead to serious health and environmental problems. The main objective of this paper is to evaluate the effects of pollutants on the living beings and environment, microbial responses to pollution, and distribution of various biodegrading microorganisms in the environment. Profiling of biodegrading microorganisms, microbial biosensor to detect environmental pollution, and strain improvement through genetic manipulation to enhance the biodegradation process have been discussed in detail

    Electricity generation in a microbial fuel cell using iron oxide nanoparticles

    Get PDF
    Rapid industrialization and population growth have generated a worldwide interest in renewable energy resourcesto meet. In this context, microbial fuel cells serve the dual purpose of electricity generation and wastewater treatment in a sustainable way. Here, we conducted a set of experiments in two-chambered microbial fuel cell (MFC) to study its efficiency in chemical oxygen demand (COD) removal and electricity generation. The MFC was run at constant pH of 5.5 and mesophilic temperature of 30-32°C using mixed consortia of sediment as inoculum and candy industry wastewater as substrate. of the five different initial substrate concentrations of 2000, 4000, 6000, 8000 and 10000 mg COD/L studied, the highest COD removal efficiency of 96.0% and electricity generation of 810 mV was recorded at the initial substrate concentration of 4000 mg COD/L. The experiments conducted also revealed that iron oxide nanoparticles concentration of 0.10 g/L with an average size of 25.64 nm, increased the electricity generation potential to 870 mV by 6.9%. Among the different species of bioelectricity generating bacteria colonized, Corynebacterium variabile SMS-14 was documented as the most dominant species

    Electricity generation in a microbial fuel cell using iron oxide nanoparticles

    Get PDF
    571-577Rapid industrialization and population growth have generated a worldwide interest in renewable energy resourcesto meet. In this context, microbial fuel cells serve the dual purpose of electricity generation and wastewater treatment in a sustainable way. Here, we conducted a set of experiments in two-chambered microbial fuel cell (MFC) to study its efficiency in chemical oxygen demand (COD) removal and electricity generation. The MFC was run at constant pH of 5.5 and mesophilic temperature of 30-32°C using mixed consortia of sediment as inoculum and candy industry wastewater as substrate. of the five different initial substrate concentrations of 2000, 4000, 6000, 8000 and 10000 mg COD/L studied, the highest COD removal efficiency of 96.0% and electricity generation of 810 mV was recorded at the initial substrate concentration of 4000 mg COD/L. The experiments conducted also revealed that iron oxide nanoparticles concentration of 0.10 g/L with an average size of 25.64 nm, increased the electricity generation potential to 870 mV by 6.9%. Among the different species of bioelectricity generating bacteria colonized, Corynebacterium variabile SMS-14 was documented as the most dominant species

    A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production.

    Full text link
    The quest for a chemical surfactant substitute has been fuelled by increased environmental awareness. The benefits that biosurfactants present like biodegradability, and biocompatibility over their chemical and synthetic counterparts has contributed immensely to their popularity and use in various industries such as petrochemicals, mining, metallurgy, agrochemicals, fertilizers, beverages, cosmetics, etc. With the growing demand for biosurfactants, researchers are looking for low-cost waste materials to use them as substrates, which will lower the manufacturing costs while providing waste management services as an add-on benefit. The use of low-cost substrates will significantly reduce the cost of producing biosurfactants. This paper discusses the use of various feedstocks in the production of biosurfactants, which not only reduces the cost of waste treatment but also provides an opportunity to profit from the sale of the biosurfactant. Furthermore, it includes state-of-the-art information about employing municipal solid waste as a sustainable feedstock for biosurfactant production, which has not been simultaneously covered in many published literatures on biosurfactant production from different feedstocks. It also addresses the myriad of other issues associated with the processing of biosurfactants, as well as the methods used to address these issues and perspectives, which will move society towards cleaner production

    Selective production of volatile fatty acids at different pH in an anaerobic membrane bioreactor

    Full text link
    © 2019 Elsevier Ltd This study investigated the production of major volatile fatty acid (VFA) components in an anaerobic membrane bioreactor (AnMBR) to treat low-strength synthetic wastewater. No selective inhibition was applied for methane production and solvent-extraction method was used for VFA extraction. The results showed acetic and propionic acid were the predominant VFA components at pH 7.0 and 6.0 with concentrations of 1.444 ± 0.051 and 0.516 ± 0.032 mili-mol/l respectively. At pH 12.0 isobutyric acid was the major VFA component with a highest concentration of 0.712 ± 0.008 mili-mol/l. The highest VFA yield was 48.74 ± 1.5 mg VFA/100 mg CODfeed at pH 7.0. At different pH, AnMBR performance was evaluated in terms of COD, nutrient removal and membrane fouling rate. It was observed that the membrane fouled at a faster rate in both acidic and alkaline pH conditions, the slowest rate in membrane fouling was observed at pH 7.0

    Insights into interdisciplinary approaches for bioremediation of organic pollutants: innovations, challenges and perspectives

    Get PDF
    Modern industrialization has originated a tremendous industrial growth. Discharge of industrial effluent is a critical threat to a safe environment. Removal of various pollutants from industrial wastewater is obligatory for controlling environmental pollution. Bioremediation using biotechnological interventions has attracted greater attention among the researchers in the field of control and abatement of environmental pollution. This review is aimed to introduce methods for bioremediation on the removal of organic pollutants from industrial wastewater that have been discussed, and the kinetic models that are related to it have been introduced. In addition, biotechnological interventions on bioremediation of pollutants have been discussed fingerprinting of microbial sp. present at polluted sites. Microbial electrochemical technologies such as a green technology for the removal of pollutants from industrial effluents and simultaneous resource recovery from industrial waste have been discussed to generate up-to-date scientific literature. This review also provides detailed knowledge gaps, challenges and research perspectives related to the topic.(undefined)info:eu-repo/semantics/publishedVersio
    corecore