64,252 research outputs found
Structure of the electrospheres of bare strange stars
We consider a thin ( fm) layer of electrons (the
electrosphere) at the quark surface of a bare strange star, taking into account
the surface effects at the boundary with the vacuum. The quark surface holds
the electron layer by an extremely strong electric field, generated in the
electrosphere to prevent the electrons from escaping to infinity by
counterbalancing the degeneracy and thermal pressure. Because of the surface
tension and depletion of quarks a very thin (a few fm) charged layer of
quarks forms at the surface of the star. The formation of this layer modifies
the structure of the electrosphere, by significantly changing the electric
field and the density of the electrons, in comparison with the case when the
surface effects are ignored. Some consequences of the modification of the
electrosphere structure on the properties of strange stars are briefly
discussed.Comment: 23 pages, 6 figures, to appear in Ap
New Interaction between Dark Energy and Dark Matter Changes Sign during Cosmological Evolution
It is found by Cai and Su that the interaction between dark energy and cold
dark matter is likely to change the sign during the cosmological evolution.
Motivated by this, we suggest a new form of interaction between dark energy and
dark matter, which changes from negative to positive as the expansion of our
universe changes from decelerated to accelerated. We find that the interacting
model is consistent with the second law of thermodynamics and the observational
constraints. And, we also discuss the unified adiabatic-squared sound speed of
the model.Comment: 16 pages, 3 figure, 1 table. Final version in PR
Enhancement of variation of fundamental constants in ultracold atom and molecule systems near Feshbach resonances
Scattering length, which can be measured in Bose-Einstein condensate and
Feshbach molecule experiments, is extremely sensitive to the variation of
fundamental constants, in particular, the electron-to-proton mass ratio
(m_e/m_p or m_e/Lambda_{QCD}, where Lambda_{QCD} is the QCD scale). Based on
single- and two-channel scattering model, we show how the variation of the mass
ratio propagates to the scattering length. Our results suggest that variation
of m_e/m_p on the level of 10^{-11}~10^{-14} can be detected near a narrow
magnetic or an optical Feshbach resonance by monitoring the scattering length
on the 1% level. Derived formulae may also be used to estimate the isotopic
shift of the scattering length
Multi-wavelength Emission from the Fermi Bubble III. Stochastic (Fermi) Re-Acceleration of Relativistic Electrons Emitted by SNRs
We analyse the model of stochastic re-acceleration of electrons, which are
emitted by supernova remnants (SNRs) in the Galactic Disk and propagate then
into the Galactic halo, in order to explain the origin on nonthermal (radio and
gamma-ray) emission from the Fermi Bubbles (FB). We assume that the energy for
re-acceleration in the halo is supplied by shocks generated by processes of
star accretion onto the central black hole. Numerical simulations show that
regions with strong turbulence (places for electron re-acceleration) are
located high up in the Galactic Halo about several kpc above the disk. The
energy of SNR electrons that reach these regions does not exceed several GeV
because of synchrotron and inverse Compton energy losses. At appropriate
parameters of re-acceleration these electrons can be re-accelerated up to the
energy 10E12 eV which explains in this model the origin of the observed radio
and gamma-ray emission from the FB. However although the model gamma-ray
spectrum is consistent with the Fermi results, the model radio spectrum is
steeper than the observed by WMAP and Planck. If adiabatic losses due to plasma
outflow from the Galactic central regions are taken into account, then the
re-acceleration model nicely reproduces the Planck datapoints.Comment: 33 pages, 8 figures, accepted by Ap
The Bloch-Okounkov correlation functions, a classical half-integral case
Bloch and Okounkov's correlation function on the infinite wedge space has
connections to Gromov-Witten theory, Hilbert schemes, symmetric groups, and
certain character functions of \hgl_\infty-modules of level one. Recent works
have calculated these character functions for higher levels for \hgl_\infty
and its Lie subalgebras of classical type. Here we obtain these functions for
the subalgebra of type of half-integral levels and as a byproduct, obtain
-dimension formulas for integral modules of type at half-integral level.Comment: v2: minor changes to the introduction; accepted for publication in
Letters in Mathematical Physic
Irreducible Characters of General Linear Superalgebra and Super Duality
We develop a new method to solve the irreducible character problem for a wide
class of modules over the general linear superalgebra, including all the
finite-dimensional modules, by directly relating the problem to the classical
Kazhdan-Lusztig theory. We further verify a parabolic version of a conjecture
of Brundan on the irreducible characters in the BGG category \mc{O} of the
general linear superalgebra. We also prove the super duality conjecture
Super duality and irreducible characters of ortho-symplectic Lie superalgebras
We formulate and establish a super duality which connects parabolic
categories between the ortho-symplectic Lie superalgebras and classical Lie
algebras of types. This provides a complete and conceptual solution of
the irreducible character problem for the ortho-symplectic Lie superalgebras in
a parabolic category , which includes all finite-dimensional irreducible
modules, in terms of classical Kazhdan-Lusztig polynomials.Comment: 30 pages, Section 5 rewritten and shortene
The origin of the 6.4 keV line emission and H ionization in the diffuse molecular gas of the Galactic center region
We investigate the origin of the diffuse 6.4 keV line emission recently
detected by Suzaku and the source of H_2ionization in the diffuse molecular gas
of the Galactic Center (GC) region. We show that Fe atoms and H_2 molecules in
the diffuse interstellar medium of the GC are not ionized by the same
particles. The Fe atoms are most likely ionized by X-ray photons emitted by Sgr
A* during a previous period of flaring activity of the supermassive black hole.
The measured longitudinal intensity distribution of the diffuse 6.4 keV line
emission is best explained if the past activity of Sgr A$* lasted at least
several hundred years and released a mean 2-100 keV luminosity > 10^38} erg
s^{-1}. The H_2 molecules of the diffuse gas can not be ionized by photons from
Sgr A*, because soft photons are strongly absorbed in the interstellar gas
around the central black hole. The molecular hydrogen in the GC region is most
likely ionized by low-energy cosmic rays, probably protons rather than
electrons, whose contribution into the diffuse 6.4 keV line emission is
negligible.Comment: 5 pages, 4 figues, accepted for publication in the Astrophysical
Journal Letter
Generalized Darboux transformations for the KP equation with self-consistent sources
The KP equation with self-consistent sources (KPESCS) is treated in the
framework of the constrained KP equation. This offers a natural way to obtain
the Lax representation for the KPESCS. Based on the conjugate Lax pairs, we
construct the generalized binary Darboux transformation with arbitrary
functions in time for the KPESCS which, in contrast with the binary Darboux
transformation of the KP equation, provides a non-auto-B\"{a}cklund
transformation between two KPESCSs with different degrees. The formula for
N-times repeated generalized binary Darboux transformation is proposed and
enables us to find the N-soliton solution and lump solution as well as some
other solutions of the KPESCS.Comment: 20 pages, no figure
- …
