3,441 research outputs found

    Polytropic equation of state and primordial quantum fluctuations

    Get PDF
    We study the primordial Universe in a cosmological model where inflation is driven by a fluid with a polytropic equation of state p=αρ+kρ1+1/np = \alpha\rho + k\rho^{1 + 1/n}. We calculate the dynamics of the scalar factor and build a Universe with constant density at the origin. We also find the equivalent scalar field that could create such equation of state and calculate the corresponding slow-roll parameters. We calculate the scalar perturbations, the scalar power spectrum and the spectral index.Comment: 16 pages, 4 figure

    No-horizon theorem for spacetimes with spacelike G1 isometry groups

    Full text link
    We consider four-dimensional spacetimes (M,g)(M,{\mathbf g}) which obey the Einstein equations G=T{\mathbf G}={\mathbf T}, and admit a global spacelike G1=RG_{1}={\mathbb R} isometry group. By means of dimensional reduction and local analyis on the reduced (2+1) spacetime, we obtain a sufficient condition on T{\mathbf T} which guarantees that (M,g)(M,{\mathbf g}) cannot contain apparent horizons. Given any (3+1) spacetime with spacelike translational isometry, the no-horizon condition can be readily tested without the need for dimensional reduction. This provides thus a useful and encompassing apparent horizon test for G1G_{1}-symmetric spacetimes. We argue that this adds further evidence towards the validity of the hoop conjecture, and signals possible violations of strong cosmic censorship.Comment: 8 pages, LaTeX, uses IOP package; published in Class. Quantum Gra

    Generalized Chaplygin gas with α=0\alpha = 0 and the ΛCDM\Lambda CDM cosmological model

    Full text link
    The generalized Chaplygin gas model is characterized by the equation of state p=Aραp = - \frac{A}{\rho^\alpha}. It is generally stated that the case α=0\alpha = 0 is equivalent to a model with cosmological constant and dust (ΛCDM\Lambda CDM). In this work we show that, if this is true for the background equations, this is not true for the perturbation equations. Hence, the mass spectrum predicted for both models may differ.Comment: Latex file, 4 pages, 2 figures in eps forma

    Different faces of the phantom

    Full text link
    The SNe type Ia data admit that the Universe today may be dominated by some exotic matter with negative pressure violating all energy conditions. Such exotic matter is called {\it phantom matter} due to the anomalies connected with violation of the energy conditions. If a phantom matter dominates the matter content of the universe, it can develop a singularity in a finite future proper time. Here we show that, under certain conditions, the evolution of perturbations of this matter may lead to avoidance of this future singularity (the Big Rip). At the same time, we show that local concentrations of a phantom field may form, among other regular configurations, black holes with asymptotically flat static regions, separated by an event horizon from an expanding, singularity-free, asymptotically de Sitter universe.Comment: 6 pages, presented at IRGAC 2006, Barcelona, 11-15 July 200

    Modeling the spectrum of gravitational waves in the primordial Universe

    Full text link
    Recent observations from type Ia Supernovae and from cosmic microwave background (CMB) anisotropies have revealed that most of the matter of the Universe interacts in a repulsive manner, composing the so-called dark energy constituent of the Universe. The analysis of cosmic gravitational waves (GW) represents, besides the CMB temperature and polarization anisotropies, an additional approach in the determination of parameters that may constrain the dark energy models and their consistence. In recent work, a generalized Chaplygin gas model was considered in a flat universe and the corresponding spectrum of gravitational waves was obtained. The present work adds a massless gas component to that model and the new spectrum is compared to the previous one. The Chaplygin gas is also used to simulate a Λ\Lambda-CDM model by means of a particular combination of parameters so that the Chaplygin gas and the Λ\Lambda-CDM models can be easily distinguished in the theoretical scenarios here established. The lack of direct observational data is partialy solved when the signature of the GW on the CMB spectra is determined.Comment: Proc. of the Conference on Magnetic Fields in the Universe: from laboratories and stars to primordial structures, AIP(NY), eds. E. M. de Gouveia Dal Pino, G. Lugones & A. Lazarian (2005), in press. (8 pages, 11 figures

    Desempenho de novilhos em Panicum maximum JACQ. CV. tanzânia sob regime de desfolhação intermitente.

    Get PDF
    Diante disso, o objetivo desse trabalho foi avaliar o desempenho de novilhos em ?Panicum maximum Jacq. cv. Tanzânia? sob regime de desfolhação intermitente, submetido a duas intensidades de desfolhação

    Strong curvature singularities in quasispherical asymptotically de Sitter dust collapse

    Get PDF
    We study the occurrence, visibility, and curvature strength of singularities in dust-containing Szekeres spacetimes (which possess no Killing vectors) with a positive cosmological constant. We find that such singularities can be locally naked, Tipler strong, and develop from a non-zero-measure set of regular initial data. When examined along timelike geodesics, the singularity's curvature strength is found to be independent of the initial data.Comment: 16 pages, LaTeX, uses IOP package, 2 eps figures; accepted for publication in Class. Quantum Gra
    corecore