10 research outputs found

    Preliminary Evaluation of the Sural Nerve Using 22-MHz Ultrasound: A New Approach for Evaluation of Diabetic Cutaneous Neuropathy

    Get PDF
    Background: The application of 22-MHz high-frequency ultrasound allows for visualization of the inner part of the sural nerve. The aim of this study was to evaluate the morphological changes of sural nerves in patients with type 2 diabetes mellitus using ultrasound. Materials and Methods: The thickness/width (T/W) ratio, the cross-sectional area (CSA) of the sural nerves and the maximum thickness (MT) of the nerve fascicles were measured in 100 patients with type 2 diabetes mellitus and 50 healthy volunteers using 22-MHz ultrasound. Receiver operating characteristic (ROC) curves were plotted to determine the optimal cut-off values as well as the sensitivities and specificities. All parameters were significantly different between the subject and control groups. The ROC curves demonstrated that the MT was the most predictive of diabetic cutaneous neuropathy, with an optimal cut-off value of 0.365 mm that yielded a sensitivity of 90.3 % and a specificity of 87.7%. Conclusions: The results of this study suggest that 22-MHz ultrasound may be a valuable tool for evaluating diabeti

    Resistance wheel exercise from mid-life has minimal effect on sciatic nerves from old mice in which sarcopenia was prevented

    No full text
    The ability of resistance exercise, initiated from mid-life, to prevent age-related changes in old sciatic nerves, was investigated in male and female C57BL/6J mice. Aging is associated with cellular changes in old sciatic nerves and also loss of skeletal muscle mass and function (sarcopenia). Mature adult mice aged 15 months (M) were subjected to increasing voluntary resistance wheel exercise (RWE) over a period of 8 M until 23 M of age. This prevented sarcopenia in the old 23 M aged male and female mice. Nerves of control sedentary (SED) males at 3, 15 and 23 M of age, showed a decrease in the myelinated axon numbers at 15 and 23 M, a decreased g-ratio and a significantly increased proportion of myelinated nerves containing electron-dense aggregates at 23 M. Myelinated axon and nerve diameter, and axonal area, were increased at 15 M compared with 3 and 23 M. Exercise increased myelinated nerve profiles containing aggregates at 23 M. S100 protein, detected with immunoblotting was increased in sciatic nerves of 23 M old SED females, but not males, compared with 15 M, with no effect of exercise. Other neuronal proteins showed no significant alterations with age, gender or exercise. Overall the RWE had no cellular impact on the aging nerves, apart from an increased number of old nerves containing aggregates. Thus the relationship between cellular changes in aging nerves, and their sustained capacity for stimulation of old skeletal muscles to help maintain healthy muscle mass in response to exercise remains unclear
    corecore