15 research outputs found
TERT promoter wild-type glioblastomas show distinct clinical features and frequent PI3K pathway mutations
Abstract TERT promoter (TERTp) mutations are found in the majority of World Health Organization (WHO) grade IV adult IDH wild-type glioblastoma (IDH-wt GBM). Here, we characterized the subset of IDH-wt GBMs that do not have TERTp mutations. In a cohort of 121 adult grade IV gliomas, we identified 109 IDH-wt GBMs, after excluding 11 IDH-mutant cases and one H3F3A -mutant case. Within the IDH-wt cases, 16 cases (14.7%) were TERTp wild-type (TERTp-wt). None of the 16 had BRAF V600E or H3F3A G34 hotspot mutations. When compared to TERTp mutants, patients with TERTp-wt GBMs, were significantly younger at first diagnosis (53.2 years vs. 60.7 years, p = 0.0096), and were more frequently found to have cerebellar location (p = 0.0027). Notably, 9 of 16 (56%) of TERTp-wt GBMs contained a PIK3CA or PIK3R1 mutation, while only 16/93 (17%) of TERTp-mutant GBMs harbored these alterations (p = 0.0018). As expected, 8/16 (50%) of TERTp-wt GBMs harbored mutations in the BAF complex gene family (ATRX, SMARCA4, SMARCB1, and ARID1A), compared with only 8/93 (9%) of TERTp-mutant GBMs (p = 0.0003). Mutations in BAF complex and PI3K pathway genes co-occurred more frequently in TERTp-wt GBMs (p = 0.0002), an association that has been observed in other cancers, suggesting a functional interaction indicative of a distinct pathway of gliomagenesis. Overall, our finding highlights heterogeneity within WHO-defined IDH wild-type GBMs and enrichment of the TERTp-wt subset for BAF/PI3K-altered tumors, potentially comprising a distinct clinical subtype of gliomas
Recommended from our members
Accelerated progression of IDH mutant glioma after first recurrence
Background. Isocitrate dehydrogenase (IDH) mutant gliomas are a distinct subtype, reflected in the World Health Organization (WHO) 2016 revised diagnostic criteria. To inform IDH-targeting trial design, we sought to characterize outcomes exclusively within IDH mutant gliomas.
Methods. We retrospectively analyzed 275 IDH mutant glioma patients treated at our institution. Progression was determined using low-grade glioma criteria from Response Assessment in Neuro-Oncology. We calculated survival statistics with the Kaplan-Meier method, and survival proportions were correlated with molecular, histologic, and clinical factors.
Results. During a median follow-up of 6.4 years, 44 deaths (7.6%) and 149 first progression (PFS1) events (54.1%) were observed. Median PFS1 was 5.7 years (95% CI: 4.7-6.4) and OS was 18.7 years (95% CI: 12.2 y-not reached). Consistent with prior studies, we observed an association of grade, molecular diagnosis, and treatment with PFS1. Following the first progressive episode, 79 second progression events occurred during a median follow-up period of 4.1 years. Median PFS following an initial progressive event (PFS2) was accelerated at 3.1 years (95% CI: 2.1-4.1). PFS2 was a surrogate prognostic marker, identifying patients with poorer overall survival.
Conclusion. We report outcomes in a large cohort of IDH mutant glioma, providing a well-characterized historical control population for future clinical trial design. Notably, the interval between first and second recurrence (PFS2, 3.0 y) is shorter than time from diagnosis to first recurrence (PFS1, 5.7 y), evidence that these tumors clinically degenerate from an indolent course to an accelerated malignant phase. Thus, PFS2 represents a relevant outcome for trials investigating drug efficacy at recurrence
Sirtuin activation targets IDH-mutant tumors
Background. Isocitrate dehydrogenase (IDH)-mutant tumors exhibit an altered metabolic state and are critically dependent upon nicotinamide adenine dinucleotide (NAD+) for cellular survival. NAD+ steady-state levels can be influenced by both biosynthetic and consumptive processes. Here, we investigated activation of sirtuin (SIRT) enzymes, which consume NAD+ as a coenzyme, as a potential mechanism to reduce cellular NAD+ levels in these tumors.
Methods. The effect of inhibition or activation of sirtuin activity, using (i) small molecules, (ii) clustered regularly interspaced short palindromic repeat/CR1SPR associated protein 9 gene editing, and (iii) inducible overexpression, was investigated in IDH-mutant tumor lines, including patient-derived IDH-mutant glioma lines.
Results. We found that Sirt1 activation led to marked augmentation of NAD+ depletion and accentuation of cytotoxicity when combined with inhibition of nicotinamide phosphoribosyltransferase (NAMPT), consistent with the enzymatic activity of SIRT1 as a primary cellular NAD+ consumer in IDH-mutant cells. Activation of Sirt1 through either genetic overexpression or pharmacologic Sirt1-activating compounds (STACs), an existing class of well-tolerated drugs, led to inhibition of IDH1-mutant tumor cell growth.
Conclusions. Activation of Sirt1 can selectively target IDH-mutant tumors. These findings indicate that relatively nontoxic STACs, administered either alone or in combination with NAMPT inhibition, could alter the growth trajectory of IDH-mutant gliomas while minimizing toxicity associated with cytotoxic chemotherapeutic regimens
Recommended from our members
Radiographic assessment of contrast enhancement and T2/FLAIR mismatch sign in lower grade gliomas: correlation with molecular groups
Recommended from our members
A Clinical Rule for Preoperative Prediction of BRAF Mutation Status in Craniopharyngiomas
Papillary craniopharyngiomas are characterized by BRAFV600E mutations. Targeted therapy can elicit a dramatic radiographic regression of these tumors. Therefore, prediction of BRAF mutation status before definitive surgery could enable neoadjuvant treatment strategies.
To establish preoperative prediction criteria to identify patients with a BRAF mutant craniopharyngioma.
Sixty-four patients with craniopharyngioma were included in this study. We determined BRAF mutation status by targeted sequencing. After scoring interobserver variability between presurgical clinical data and radiographic features, we established a diagnostic rule for BRAF mutation in our discovery cohort. We then validated the rule in an independent cohort.
The BRAFV600E mutation was detected in 12 of 42 patients in the discovery cohort. There were no patients under age 18 with BRAF mutation. Calcification was rare in tumors with BRAF mutation (P < .001), and 92% of them were supradiaphragmatic in location. Combining these 3 features-older than 18 years, absence of calcification, and supradiaphragmatic tumor location-we established a rule for predicting BRAF mutation. In cases where all 3 criteria were fulfilled, the sensitivity and specificity for the presence of BRAF mutation were 83% and 93%, respectively. In the validation cohort (n = 22), the sensitivity was 100% and specificity was 89%.
We propose predictive criteria for a BRAF mutation in craniopharyngioma using preoperative clinical and radiographic data. This rule may be useful in identifying patients who could potentially benefit from neoadjuvant BRAFV600E-targeted systemic therapies
Intratumoral heterogeneity and TERT promoter mutations in progressive/higher-grade meningiomas
Background: Recent studies have reported mutations in the telomerase reverse transcriptase promoter (TERTp) in meningiomas. We sought to determine the frequency, clonality and clinical significance of telomere gene alterations in a cohort of patients with progressive/higher-grade meningiomas. Methods: We characterized 64 temporally- and regionally-distinct specimens from 26 WHO grade III meningioma patients. On initial diagnoses, the meningiomas spanned all WHO grades (3 grade I, 13 grade II and 10 grade III). The tumor samples were screened for TERTp and ATRX/DAXX mutations, and TERT rearrangements. Additionally, TERTp was sequenced in a separate cohort of 19 patients with radiation-associated meningiomas. We examined the impact of mutational status on patients’ progression and overall survival. Results: Somatic TERTp mutations were detected in six patients (6/26 = 23%). Regional intratumoral heterogeneity in TERTp mutation status was noted. In 4 patients, TERTp mutations were detected in recurrent specimens but not in the available specimens of the first surgery. Additionally, a TERT gene fusion (LPCAT1-TERT) was found in one sample. In contrary, none of the investigated samples harbored an ATRX or DAXX mutation. In the cohort of radiation-induced meningiomas, TERTp mutation was detected in two patients (10.5%). Importantly, we found that patients with emergence of TERTp mutations had a substantially shorter OS than their TERTp wild-type counterparts (2.7 years, 95% CI 0.9 – 4.5 years versus 10.8 years, 95% CI 7.8 -12.8 years, p=0.003). Conclusions: In progressive/higher-grade meningiomas,TERTp mutations are associated with poor survival, supporting a model in which selection of this alteration is a harbinger of aggressive tumor development. In addition, we observe spatial intratumoral heterogeneity of TERTp mutation status, consistent with this model of late emergence in tumor evolution. Thus, early detection of TERTp mutations may define patients with more aggressive meningiomas. Stratification for TERT alterations should be adopted in future clinical trials of progressive/higher-grade meningiomas
Recommended from our members
PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors
Oligodendroglioma has a relatively favorable prognosis, however, often undergoes malignant progression. We hypothesized that preclinical models of oligodendroglioma could facilitate identification of therapeutic targets in progressive oligodendroglioma. We established multiple oligodendroglioma xenografts to determine if the PI3K/AKT/mTOR signaling pathway drives tumor progression.
Two anatomically distinct tumor samples from a patient who developed progressive anaplastic oligodendroglioma (AOD) were collected for orthotopic transplantation in mice. We additionally implanted 13 tumors to investigate the relationship between PI3K/AKT/mTOR pathway alterations and oligodendroglioma xenograft formation. Pharmacologic vulnerabilities were tested in newly developed AOD models
and
.
A specimen from the tumor site that subsequently manifested rapid clinical progression contained a
mutation E542K, and yielded propagating xenografts that retained the OD/AOD-defining genomic alterations (
and 1p/19q codeletion) and
, and displayed characteristic sensitivity to alkylating chemotherapeutic agents. In contrast, a xenograft did not engraft from the region that was clinically stable and had wild-type
. In our panel of OD/AOD xenografts, the presence of activating mutations in the PI3K/AKT/mTOR pathway was consistently associated with xenograft establishment (6/6, 100%). OD/AOD that failed to generate xenografts did not have activating PI3K/AKT/mTOR alterations (0/9,
< 0.0001). Importantly, mutant
oligodendroglioma xenografts were vulnerable to PI3K/AKT/mTOR pathway inhibitors
and
-evidence that mutant
is a tumorigenic driver in oligodendroglioma.
Activation of the PI3K/AKT/mTOR pathway is an oncogenic driver and is associated with xenograft formation in oligodendrogliomas. These findings have implications for therapeutic targeting of PI3K/AKT/mTOR pathway activation in progressive oligodendrogliomas
Recommended from our members
A Hyperactive RelA/p65-Hexokinase 2 Signaling Axis Drives Primary Central Nervous System Lymphoma
Primary central nervous system lymphoma (PCNSL) is an isolated type of lymphoma of the central nervous system and has a dismal prognosis despite intensive chemotherapy. Recent genomic analyses have identified highly recurrent mutations of MYD88 and CD79B in immunocompetent PCNSL, whereas LMP1 activation is commonly observed in Epstein-Barr virus (EBV)-positive PCNSL. However, a lack of clinically representative preclinical models has hampered our understanding of the pathogenic mechanisms by which genetic aberrations drive PCNSL disease phenotypes. Here, we establish a panel of 12 orthotopic, patient-derived xenograft (PDX) models from both immunocompetent and EBV-positive PCNSL and secondary CNSL biopsy specimens. PDXs faithfully retained their phenotypic, metabolic, and genetic features, with 100% concordance of MYD88 and CD79B mutations present in PCNSL in immunocompetent patients. These models revealed a convergent functional dependency upon a deregulated RelA/p65-hexokinase 2 signaling axis, codriven by either mutated MYD88/ CD79B or LMP1 with Pin1 overactivation in immunocompetent PCNSL and EBV-positive PCNSL, respectively. Notably, distinct molecular alterations used by immunocompetent and EBV-positive PCNSL converged to deregulate RelA/p65 expression and to drive glycolysis, which is critical for intracerebral tumor progression and FDG-PET imaging characteristics. Genetic and pharmacologic inhibition of this key signaling axis potently suppressed PCNSL growth in vitro and in vivo. These patient-derived models offer a platform for predicting clinical chemotherapeutics efficacy and provide critical insights into PCNSL pathogenic mechanisms, accelerating therapeutic discovery for this aggressive disease.
Significance: A set of clinically relevant CNSL xenografts identifies a hyperactive RelA/p65-hexokinase 2 signaling axis as a driver of progression and potential therapeutic target for treatment and provides a foundational preclinical platform
Recommended from our members
Genotype-targeted local therapy of glioma
Aggressive neurosurgical resection to achieve sustained local control is essential for prolonging survival in patients with lower-grade glioma. However, progression in many of these patients is characterized by local regrowth. Most lower-grade gliomas harbor isocitrate dehydrogenase 1 (IDH1) or IDH2 mutations, which sensitize to metabolism-altering agents. To improve local control of IDH mutant gliomas while avoiding systemic toxicity associated with metabolic therapies, we developed a precision intraoperative treatment that couples a rapid multiplexed genotyping tool with a sustained release microparticle (MP) drug delivery system containing an IDH-directed nicotinamide phosphoribosyltransferase (NAMPT) inhibitor (GMX-1778). We validated our genetic diagnostic tool on clinically annotated tumor specimens. GMX-1778 MPs showed mutant IDH genotype-specific toxicity in vitro and in vivo, inducing regression of orthotopic IDH mutant glioma murine models. Our strategy enables immediate intraoperative genotyping and local application of a genotype-specific treatment in surgical scenarios where local tumor control is paramount and systemic toxicity is therapeutically limiting