79 research outputs found

    A Secure Cloud-based Platform to Host Healthcare Applications

    Get PDF
    Digital technologies, such as Big Data analytics, artificial intelligence, cloud and high-performance computing are presenting new opportunities to transform healthcare systems, increase connectivity of hospitals and other providers, and therefore potentially and significantly improve patient care. However, such networked computing infrastructures also raise significant cybersecurity risks, especially in the healthcare domain, where protecting sensitive personal information is of paramount importance. Project ASCLEPIOS aims at strengthening the trust of users in cloud-based healthcare services by utilizing trusted execution environment and several modern cryptographic approaches such as attribute based encryption, searchable encryption, functional encryption to build a cloud-based e-health framework that protects users’ privacy, prevents both internal and external attacks, verifies the integrity of medical devices before application, and runs privacy-preserving data analytics on encrypted data. The project investigates modern encryption techniques and their combination in order to provide increased security of e-health applications that are then presented towards end-users utilizing a cloud-based platform. Although some topics such as security and privacy are already investigated through block-chain related technologies, it has been decided that the selected approaches would be more suitable for these particular challenges. In order to prototype its security services, ASCLEPIOS develops and deploys three large-scale healthcare demonstrators, provided by three leading hospitals from Europe. These demonstrators are rooted in the practice-based problems and applications provided by the project’s healthcare partners. The Amsterdam University Centers, University of Amsterdam, plans to improve stroke hyper-acute care through secure information sharing on a cloud computing platform to improve patient management. Additionally, they are also building prediction models to enable earlier discharge of patients from hospitals with lower risk factors. Charité Berlin plans to improve inpatient and outpatient sleep medication by remotely controlling the quality of the collected data and transferring it on-line for further analysis. Finally, the Norwegian Centre for e-health Research, University Hospital of North Norway is developing a system for privacy-preserving monitoring and benchmarking of antibiotics prescription of general practitioners. The common characteristics of these three scenarios are the increased demand for high levels of security in data transfer, storage and privacy preserving analytics on cloud infrastructures. In order deploy, operate and further develop these applications to increase their security with the ASCLEPIOS framework, a cloud computing testbed is being setup. The testbed uses state-of-the-art technologies for cloud application deployment and run-time orchestration in order to ensure the optimized deployment and execution of the demonstrator applications. As the data sources do not require the local execution (albeit in one case data may remain on the data source) of processing, there is no need for fog or edge computing, but the testbed is based on private OpenStack cloud computing infrastructures and utilizes the MiCADO framework which is compatible with different containers such as Docker and Kubernetes. The project started only recently, and currently it is in the early stages of systems design and specification. This presentation will provide a short introduction to the ASCLEPIOS project and its demonstrators and will present early results of the currently ongoing requirements specification and platform design processes

    Understanding Social Resilience in the Maine Lobster Industry

    Get PDF
    The Maine lobster Homarus americanus fishery is considered one of the most successful fisheries in the world due in part to its unique comanagement system, the conservation ethic of the harvesters, and the ability of the industry to respond to crises and solve collective-action problems. However, recent threats raise the question whether the industry will be able to respond to future threats as successfully as it has to ones in the past or whether it is now less resilient and can no longer adequately respond to threats. Through ethnographic research and oral histories with fishermen, we examined the current level of social resilience in the lobster fishery. We concentrated on recent threats to the industry and the ways in which it has responded to them, focusing on three situations: a price drop beginning in 2008, a recovery in 2010–2011, and a second collapse of prices in 2012. In addition, we considered other environmental and regulatory concerns identified by fishermen. We found that the industry is not responding effectively to recent threats and identified factors that might explain the level of social resilience in the fishery

    A microarray study of MPP(+)-treated PC12 Cells: Mechanisms of toxicity (MOT) analysis using bioinformatics tools

    Get PDF
    BACKGROUND: This paper describes a microarray study including data quality control, data analysis and the analysis of the mechanism of toxicity (MOT) induced by 1-methyl-4-phenylpyridinium (MPP(+)) in a rat adrenal pheochromocytoma cell line (PC12 cells) using bioinformatics tools. MPP(+ )depletes dopamine content and elicits cell death in PC12 cells. However, the mechanism of MPP(+)-induced neurotoxicity is still unclear. RESULTS: In this study, Agilent rat oligo 22K microarrays were used to examine alterations in gene expression of PC12 cells after 500 μM MPP(+ )treatment. Relative gene expression of control and treated cells represented by spot intensities on the array chips was analyzed using bioinformatics tools. Raw data from each array were input into the NCTR ArrayTrack database, and normalized using a Lowess normalization method. Data quality was monitored in ArrayTrack. The means of the averaged log ratio of the paired samples were used to identify the fold changes of gene expression in PC12 cells after MPP(+ )treatment. Our data showed that 106 genes and ESTs (Expressed Sequence Tags) were changed 2-fold and above with MPP(+ )treatment; among these, 75 genes had gene symbols and 59 genes had known functions according to the Agilent gene Refguide and ArrayTrack-linked gene library. The mechanism of MPP(+)-induced toxicity in PC12 cells was analyzed based on their genes functions, biological process, pathways and previous published literatures. CONCLUSION: Multiple pathways were suggested to be involved in the mechanism of MPP(+)-induced toxicity, including oxidative stress, DNA and protein damage, cell cycling arrest, and apoptosis

    Perceptions of a Secure Cloud-Based Solution for Data Sharing during Acute Stroke Care: Qualitative Interview Study

    No full text
    Background: Acute stroke care demands fast procedures performed through the collaboration of multiple professionals across multiple organizations. Cloud computing and the wide adoption of electronic medical records (EMRs) enable health care systems to improve data availability and facilitate sharing among professionals. However, designing a secure and privacy-preserving EMR cloud-based application is challenging because it must dynamically control the access to the patient’s EMR according to the needs for data during treatment. Objective: We developed a prototype of a secure EMR cloud-based application. The application explores the security features offered by the eHealth cloud-based framework created by the Advanced Secure Cloud Encrypted Platform for Internationally Orchestrated Solutions in Health Care Horizon 2020 project. This study aimed to collect impressions, challenges, and improvements for the prototype when applied to the use case of secure data sharing among acute care teams during emergency treatment in the Netherlands. Methods: We conducted 14 semistructured interviews with medical professionals with 4 prominent roles in acute care: emergency call centers, ambulance services, emergency hospitals, and general practitioner clinics. We used in-depth interviews to capture their perspectives about the application’s design and functions and its use in a simulated acute care event. We used thematic analysis of interview transcripts. Participants were recruited until the collected data reached thematic saturation. Results: The participants’ perceptions and feedback are presented as 5 themes identified from the interviews: current challenges (theme 1), quality of the shared EMR data (theme 2), integrity and auditability of the EMR data (theme 3), usefulness and functionality of the application (theme 4), and trust and acceptance of the technology (theme 5). The results reinforced the current challenges in patient data sharing during acute stroke care. Moreover, from the user point of view, we expressed the challenges of adopting the Advanced Secure Cloud Encrypted Platform for Internationally Orchestrated Solutions in Health Care Acute Stroke Care application in a real scenario and provided suggestions for improving the proposed technology’s acceptability. Conclusions: This study has endorsed a system that supports data sharing among acute care professionals with efficiency, but without compromising the security and privacy of the patient. This explorative study identified several significant barriers to and improvement opportunities for the future acceptance and adoption of the proposed system. Moreover, the study results highlight that the desired digital transformation should consider integrating the already existing systems instead of requesting migration to a new centralized system

    Spallation in cylinder-plate impact

    No full text
    • …
    corecore