118 research outputs found

    Singlet Ground State and Magnetization Plateaus in Ba3_3Mn2_2O8_8

    Full text link
    Magnetic susceptibility and the magnetization process have been measured in \green polycrystal. In this compound, the magnetic manganese ion exists as Mn5+^{5+} in a tetrahedral environment, and thus the magnetic interaction can be described by an S=1 Heisenberg model. The ground state was found to be a spin singlet with an excitation gap Δ/kB=11.2\Delta/k_{\rm B}=11.2 K. Magnetization plateaus were observed at zero and at half of the saturation magnetization. These results indicate that the present system can be represented by a coupled antiferromagnetic dimer model.Comment: 4 pages, 4 figures, jpsj styl

    Origin of superconductivity transition broadening in MgB2

    Full text link
    We report resistivity and magnetization of single crystal MgB2, focusing on the broadening of superconducting (SC) transition in magnetic fields. In-plane and out-of-plane resistivity indicate that the broadening of superconducting transition is independent of Lorentz force and that it is merely dependent on the magnetic field direction. In magnetization, diamagnetic signal begins to appear at almost the same temperature as the onset temperature of resistivity transition. These results suggest that the broadening is attributed not to the surface superconductivity but to the superconducting fluctuation or the vortex-liquid picture, owing to the short coherence length and the high transition temperature of MgB2.Comment: 8pages, 6 figures, to be published in Physica

    Interaction of ballistic quasiparticles and vortex configurations in superfluid He3-B

    Get PDF
    The vortex line density of turbulent superfluid He3-B at very low temperature is deduced by detecting the shadow of ballistic quasiparticles which are Andreev reflected by quantized vortices. Until now the measured total shadow has been interpreted as the sum of shadows arising from interactions of a single quasiparticle with a single vortex. By integrating numerically the quasi-classical Hamiltonian equations of motion of ballistic quasiparticles in the presence of nontrivial but relatively simple vortex systems (such as vortex-vortex and vortex-antivortex pairs and small clusters of vortices) we show that partial screening can take place, and the total shadow is not necessarily the sum of the shadows. We have also found that it is possible that, upon impinging on complex vortex configurations, quasiparticles experience multiple reflections, which can be classical, Andreev, or both.Comment: To appear in Phys Rev

    On the Lifshitz tail in the density of states of a superconductor with magnetic impurities

    Full text link
    We argue that any superconductor with magnetic impurities is gapless due to a Lifshitz tail in the density of states extending to zero energy. At low energy the density of states ν(E0)\nu(E \to 0) remains finite. We show that fluctuations in the impurity distribution produce regions of suppressed superconductivity, which are responsible for the low energy density of states.Comment: 4 pages, uuencoded latex file + ps figure file

    Collective modes and sound propagation in a p-wave superconductor: Sr2_2RuO4_4

    Full text link
    There are five distinct collective modes in the recently discovered p-wave superconductor Sr2_2RuO4_4; phase and amplitude modes of the order parameter, clapping mode (real and imaginary), and spin wave. The first two modes also exist in the ordinary s-wave superconductors, while the clapping mode with the energy 2Δ(T)\sqrt{2} \Delta(T) is unique to Sr2_2RuO4_4 and couples to the sound wave. Here we report a theoretical study of the sound propagation in a two dimensional p-wave superconductor. We identified the clapping mode and study its effects on the longitudinal and transverse sound velocities in the superconducting state. In contrast to the case of 3^3He, there is no resonance absorption associated with the collective mode, since in metals ω/(vFq)1\omega/(v_F |{\bf q}|) \ll 1, where vFv_F is the Fermi velocity, {\bf q} is the wave vector, and ω\omega is the frequency of the sound wave. However, the velocity change in the collisionless limit gets modified by the contribution from the coupling to the clapping mode. We compute this contribution and comment on the visibility of the effect. In the diffusive limit, the contribution from the collective mode turns out to be negligible. The behaviors of the sound velocity change and the attenuation coefficient near TcT_c in the diffusive limit are calculated and compared with the existing experimental data wherever it is possible. We also present the results for the attenuation coefficients in both of the collisionless and diffusive limits at finite temperatures.Comment: RevTex, 12 pages, 2 figures, Replaced by the published versio

    HLA-DR and HLA-DQ alleles in patients from the south of Brazil: markers for leprosy susceptibility and resistance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many epidemiological studies have shown that the genetic factors of the host play a role in the variability of clinical response to infection caused by <it>M. leprae</it>. With the purpose of identifying genes of susceptibility, the present study investigated the possible role of HLA-DRB1 and DQA1/DQB1 alleles in susceptibility to leprosy, and whether they account for the heterogeneity in immune responses observed following infection in a Southern Brazilian population.</p> <p>Methods</p> <p>One hundred and sixty-nine leprosy patients and 217 healthy controls were analyzed by polymerase chain reaction amplification and reverse hybridization with sequence-specific oligonucleotide probes and sequence-specific primers(One Lambda<sup>®</sup>, CA, USA).</p> <p>Results</p> <p>There was a positive association of HLA-DRB1*16 (*1601 and *1602) with leprosy <it>per se </it>(7.3% <it>vs</it>. 3.2%, <it>P </it>= 0.01, OR = 2.52, CI = 1.26–5.01), in accord with previous serological studies, which showed DR2 as a marker of leprosy. Although, HLA-DQA1*05 frequency (29.8% <it>vs</it>. 20.9%, <it>P </it>= 0.0424, OR = 1.61, CI = 1.09–2.39) was higher in patients, and HLA-DQA1*02 (3.0% <it>vs</it>. 7.5%, <it>P </it>= 0.0392, OR = 0.39, CI = 0.16 – 0.95) and HLA-DQA1*04 (4.0% <it>vs</it>. 9.1%, <it>P </it>= 0.0314, OR = 0.42, CI = 0.19 – 0.93) frequencies lower, <it>P</it>-values were not significant after the Bonferroni's correction. Furthermore, HLA-DRB1*1601 (9.0% <it>vs</it>. 1.8%; <it>P </it>= 0.0016; OR = 5.81; CI = 2.05–16.46) was associated with susceptibility to borderline leprosy compared to control group, and while HLA-DRB1*08 (11.2% <it>vs</it>. 1.2%; <it>P </it>= 0.0037; OR = 12.00; CI = 1.51 – 95.12) was associated with susceptibility to lepromatous leprosy, when compared to tuberculoid leprosy, DRB1*04 was associated to protection.</p> <p>Conclusion</p> <p>These data confirm the positive association of HLA-DR2 (DRB1*16) with leprosy <it>per se</it>, and the protector effect of DRB1*04 against lepromatous leprosy in Brazilian patients.</p

    Impurity-Induced Virtual Bound States in d-Wave Superconductors

    Full text link
    It is shown that a single, strongly scattering impurity produces a bound or a virtual bound quasiparticle state inside the gap in a dd-wave superconductor. The explicit form of the bound state wave function is found to decay exponentially with angle-dependent range. These states provide a natural explanation of the second Cu NMR rate arising from the sites close to Zn impurities in the cuprates. Finally, for finite concentration of impurities in a dd-wave superconductor, we reexamine the growth of these states into an impurity band, and discuss the Mott criterion for this band.Comment: 12 pages and 2 figures, RevTex, LA-UR-94-194

    Sound propagation in density wave conductors and the effect of long-range Coulomb interaction

    Full text link
    We study theoretically the sound propagation in charge- and spin-density waves in the hydrodynamic regime. First, making use of the method of comoving frame, we construct the stress tensor appropriate for quasi-one dimensional systems within tight-binding approximation. Taking into account the screening effect of the long-range Coulomb interaction, we find that the increase of the sound velocity below the critical temperature is about two orders of magnitude less for longitudinal sound than for transverse one. It is shown that only the transverse sound wave with displacement vector parallel to the chain direction couples to the phason of the density wave, therefore we expect significant electromechanical effect only in this case.Comment: revtex, 14 pages (in preprint form), submitted to PR

    Superconducting fluctuation corrections to ultrasound attenuation in layered superconductors

    Full text link
    We consider the temperature dependence of the sound attenuation and sound velocity in layered impure metals due to superconducting fluctuations of the order parameter above the critical temperature. We obtain the dependence on material properties of these fluctuation corrections in the hydrodynamic limit, where the electron mean free path is much smaller than the wavelength of sound and where the electron collision rate is much larger than the sound frequency. For longitudinal sound propagating perpendicular to the layers, the open Fermi surface condition leads to a suppression of the divergent contributions to leading order, in contrast with the case of paraconductivity. The leading temperature dependent corrections, given by the Aslamazov-Larkin, Maki-Thompson and density of states terms, remain finite as T->Tc. Nevertheless, the sensitivity of new ultrasonic experiments on layered organic conductors should make these fluctuations effects measurable.Comment: 13 pages, 6 figures. Accepted for PRB. Added discussion on incoherent interlayer tunneling and other small modifications suggested by referee

    Impurity States and the Absence of Quasiparticle Localization in Disordered D-Wave Superconductors

    Full text link
    The absence of localization of impurity-induced low-energy quasiparticle states in a two-dimensional dd-wave superconductor is argued for any amount of disorder in the limit of unitary scatterers. This surprising result follows from the fact that a unitary impurity produces a marginally-bound state at zero energy which decays as a power-law along the nodes of the dd-wave energy gap. Consequently, for finite density of impurities, the impurity-induced states are coupled by long-range overlaps yielding extended quasiparticle states below a characteristic energy scale ωc\omega_c. Simple scaling arguments suggest that ωcec/nimp\omega_c \propto e^{-c/n_{\rm imp}}, where nimpn_{\rm imp} is the impurity density and cc is a positive constant.Comment: 4 pages, uuencoded postscript fil
    corecore