269 research outputs found

    Seasonal Variability In The Ionosphere Of Uranus

    Get PDF
    Infrared ground-based observations using IRTF, UKIRT, and Keck II of Uranus have been analyzed as to identify the long-term behavior of the H-3(+) ionosphere. Between 1992 and 2008 there are 11 individual observing runs, each recording emission from the H-3(+) Q branch emission around 4 mu m through the telluric L' atmospheric window. The column-averaged rotational H-3(+) temperature ranges between 715 K in 1992 and 534 K in 2008, with the linear fit to all the run-averaged temperatures decreasing by 8 K year(-1). The temperature follows the fractional illumination curve of the planet, declining from solstice (1985) to equinox (2007). Variations in H-3(+) column density do not appear to be correlated to either solar cycle phase or season. The radiative cooling by H-3(+) is similar to 10 times larger than the ultraviolet solar energy being injected to the atmosphere. Despite the fact that the solar flux alone is incapable of heating the atmosphere to the observed temperatures, the geometry with respect to the Sun remains an important driver in determining the thermospheric temperature. Therefore, the energy source that heats the thermosphere must be linked to solar mechanisms. We suggest that this may be in the form of conductivity created by solar ionization of atmospheric neutrals and/or seasonally dependent magnetospherically driven current systems.STFC PP/E/000983/1, ST/G0022223/1RCUKGemini ObservatoryNational Aeronautics and Space Administration (NASA) NXX08A043G, NNX08AE38AAstronom

    Mutual Event Observations of Io's Sodium Corona

    Get PDF
    We have measured the column density profile of Io's sodium corona using 10 mutual eclipses between the Galilean satellites. This approach circumvents the problem of spatially resolving Io's corona directly from Io's bright continuum in the presence of atmospheric seeing and telescopic scattering. The primary goal is to investigate the spatial and temporal variations of Io's corona. Spectra from the Keck Observatory and McDonald Observatory from 1997 reveal a corona that is only approximately spherically symmetric around Io. Comparing the globally averaged radial sodium column density profile in the corona with profiles measured in 1991 and 1985, we find that there has been no significant variation. However, there appears to be a previously undetected asymmetry: the corona above Io's sub-Jupiter hemisphere is consistently more dense than above the anti-Jupiter hemisphere

    Abundances of ammonia and carbon disulfide in the Jovian stratosphere following the impact of comet Shoemaker‐Levy 9

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95648/1/grl8459.pd

    Pluto's extended atmosphere: An escape model and initial observations

    Full text link
    We have calculated the rates of production and hydrodynamic outflow of atomic hydrogen resulting from the photodissociation of methane in the upper atmosphere of Pluto. Under the present near-perihelion conditions this yields an extended cloud of H around Pluto which is likely to be the most easily observable signature of Pluto's extended atmosphere, and thereby provide information on the extent, escape rate, and composition of Pluto's upper atmosphere. We have also performed initial observations with the IUE attempting to detect the H Ly [alpha] emission from the extended H cloud, which we use to derive upper limits to the cloud properties as a function of the cloud extent.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/30226/1/0000618.pd

    The H₃⁺ ionosphere of Uranus: decades-long cooling and local-time morphology

    Get PDF
    The upper atmosphere of Uranus has been observed to be slowly cooling between 1993 and 2011. New analysis of near-infrared observations of emission from H₃⁺ obtained between 2012 and 2018 reveals that this cooling trend has continued, showing that the upper atmosphere has cooled for 27 years, longer than the length of a nominal season of 21 years. The new observations have offered greater spatial resolution and higher sensitivity than previous ones, enabling the characterization of the H₃⁺ intensity as a function of local time. These profiles peak between 13 and 15 h local time, later than models suggest. The NASA Infrared Telescope Facility iSHELL instrument also provides the detection of a bright H₃⁺ signal on 16 October 2016, rotating into view from the dawn sector. This feature is consistent with an auroral signal, but is the only of its kind present in this comprehensive dataset

    Applying a User-centred Approach to Interactive Visualization Design

    Get PDF
    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches

    Designing an automated clinical decision support system to match clinical practice guidelines for opioid therapy for chronic pain

    Get PDF
    Abstract Background Opioid prescribing for chronic pain is common and controversial, but recommended clinical practices are followed inconsistently in many clinical settings. Strategies for increasing adherence to clinical practice guideline recommendations are needed to increase effectiveness and reduce negative consequences of opioid prescribing in chronic pain patients. Methods Here we describe the process and outcomes of a project to operationalize the 2003 VA/DOD Clinical Practice Guideline for Opioid Therapy for Chronic Non-Cancer Pain into a computerized decision support system (DSS) to encourage good opioid prescribing practices during primary care visits. We based the DSS on the existing ATHENA-DSS. We used an iterative process of design, testing, and revision of the DSS by a diverse team including guideline authors, medical informatics experts, clinical content experts, and end-users to convert the written clinical practice guideline into a computable algorithm to generate patient-specific recommendations for care based upon existing information in the electronic medical record (EMR), and a set of clinical tools. Results The iterative revision process identified numerous and varied problems with the initially designed system despite diverse expert participation in the design process. The process of operationalizing the guideline identified areas in which the guideline was vague, left decisions to clinical judgment, or required clarification of detail to insure safe clinical implementation. The revisions led to workable solutions to problems, defined the limits of the DSS and its utility in clinical practice, improved integration into clinical workflow, and improved the clarity and accuracy of system recommendations and tools. Conclusions Use of this iterative process led to development of a multifunctional DSS that met the approval of the clinical practice guideline authors, content experts, and clinicians involved in testing. The process and experiences described provide a model for development of other DSSs that translate written guidelines into actionable, real-time clinical recommendations.http://deepblue.lib.umich.edu/bitstream/2027.42/78267/1/1748-5908-5-26.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/2/1748-5908-5-26.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/3/1748-5908-5-26-S3.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/4/1748-5908-5-26-S2.TIFFhttp://deepblue.lib.umich.edu/bitstream/2027.42/78267/5/1748-5908-5-26-S1.TIFFPeer Reviewe
    corecore