15 research outputs found

    PAX4 preserves endoplasmic reticulum integrity preventing beta cell degeneration in a mouse model of type 1 diabetes mellitus

    Get PDF
    Mellado-Gil, José Manuel et al.[Aims/hypothesis]: A strategy to enhance pancreatic islet functional beta cell mass (BCM) while restraining inflammation, through the manipulation of molecular and cellular targets, would provide a means to counteract the deteriorating glycaemic control associated with diabetes mellitus. The aims of the current study were to investigate the therapeutic potential of such a target, the islet-enriched and diabetes-linked transcription factor paired box 4 (PAX4), to restrain experimental autoimmune diabetes (EAD) in the RIP-B7.1 mouse model background and to characterise putative cellular mechanisms associated with preserved BCM. [Methods]: Two groups of RIP-B7.1 mice were genetically engineered to: (1) conditionally express either PAX4 (BPTL) or its diabetes-linked mutant variant R129W (mutBPTL) using doxycycline (DOX); and (2) constitutively express luciferase in beta cells through the use of RIP. Mice were treated or not with DOX, and EAD was induced by immunisation with a murine preproinsulin II cDNA expression plasmid. The development of hyperglycaemia was monitored for up to 4 weeks following immunisation and alterations in the BCM were assessed weekly by non-invasive in vivo bioluminescence intensity (BLI). In parallel, BCM, islet cell proliferation and apoptosis were evaluated by immunocytochemistry. Alterations in PAX4- and PAX4R129W-mediated islet gene expression were investigated by microarray profiling. PAX4 preservation of endoplasmic reticulum (ER) homeostasis was assessed using thapsigargin, electron microscopy and intracellular calcium measurements. [Results]: PAX4 overexpression blunted EAD, whereas the diabetes-linked mutant variant PAX4R129W did not convey protection. PAX4-expressing islets exhibited reduced insulitis and decreased beta cell apoptosis, correlating with diminished DNA damage and increased islet cell proliferation. Microarray profiling revealed that PAX4 but not PAX4R129W targeted expression of genes implicated in cell cycle and ER homeostasis. Consistent with the latter, islets overexpressing PAX4 were protected against thapsigargin-mediated ER-stress-related apoptosis. Luminal swelling associated with ER stress induced by thapsigargin was rescued in PAX4-overexpressing beta cells, correlating with preserved cytosolic calcium oscillations in response to glucose. In contrast, RNA interference mediated repression of PAX4-sensitised MIN6 cells to thapsigargin cell death. [Conclusions/interpretation]: The coordinated regulation of distinct cellular pathways particularly related to ER homeostasis by PAX4 not achieved by the mutant variant PAX4R129W alleviates beta cell degeneration and protects against diabetes mellitus. The raw data for the RNA microarray described herein are accessible in the Gene Expression Omnibus database under accession number GSE62846.This work was funded by grants from the Consejeria de Salud, Fundacion Publica Andaluza Progreso y Salud, Junta de Andalucia (PI-0727-2010 to BRG and PI-0085-2013 to PIL), Consejeria de Economia, Innovacion y Ciencia (P10.CTS.6359 to BRG), Ministerio de Ciencia e Innovacion (BFU2013-42789-P to IQ) and the Ministerio de Economia y Competidividad, Instituto de Salud Carlos III co-funded by Fondos FEDER (PI10/00871 and PI13/00593 to BRG). NC-V is supported by a JDRF subsidy (17-2013-372 to BRG.). AM-M is a recipient of a Miguel Servet grant (CP14/00105) from the Instituto de Salud Carlos III co-funded by Fondos FEDER and EF-M is a recipient of a Juan de la Cierva Fellowship. PM is supported by Swiss National Science Foundation grant 310030-141162, and the European Union grant IMIDIA, C2008-T7. BOB is supported by grants from the Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Republic of Singapore.Peer Reviewe

    Development and application of human adult stem or progenitor cell organoids

    No full text
    Adult stem or progenitor cell organoids are 3D adult-organ-derived epithelial structures that contain self-renewing and organ-specific stem or progenitor cells as well as differentiated cells. This organoid culture system was first established in murine intestine and subsequently developed for several other organs and translated to humans. Organoid cultures have proved valuable for basic research and for the study of healthy tissue homeostasis and the biology of disease. In addition, data from proof-of-principle experiments support promising clinical applications of adult stem or progenitor cell organoids. Although renal organoids have many potential applications, an adult stem or progenitor cell organoid culture system has not yet been developed for the kidney. The development of such a system is likely to be challenging because of the intricate renal architecture. Differentiated 3D cultures and stem or progenitor cell 3D sphere cultures are, however, available for the kidney. These cultures indicate the feasibility of renal organoid culture and provide a solid basis for its development. In this Review, we discuss the state-of-the-art of human adult stem or progenitor cell organoid culture and the potential of renal organoids as tools in basic and clinical research
    corecore