4,240 research outputs found

    Multivalued memory effects in electronic phase-change manganites controlled by Joule heating

    Full text link
    Non-volatile multivalued memory effects caused by magnetic fields, currents, and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and (Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic region between ferromagnetic metallic and charge-ordered insulating states. The current/voltage effects observed in this study are explained by the self-heating effect, which enable us to control the colossal electroresistance effects. This thermal-cycle induced switching between electronic solid and liquid states can be regarded as electronic version of atomic crystal/amorphous transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Versatile helimagnetic phases under magnetic fields in cubic perovskite SrFeO3

    Full text link
    A helical spin texture is of great current interest for a host of novel spin-dependent transport phenomena. We report a rich variety of nontrivial, helimagnetic phases in the simple cubic perovskite SrFeO3 under magnetic fields up to 42 T. Magnetic and resistivity measurements revealed that the proper-screw spin phase proposed for SrFeO3 can be subdivided into at least five kinds of ordered phases. Near the multicritical point, an unconventional anomalous Hall effect was found to show up and was interpreted as due to a possible long-period noncoplanar spin texture with scalar spin chirality.Comment: 5 pages, 5 figures, Physical Review B in pres

    Bifurcation analysis in an associative memory model

    Full text link
    We previously reported the chaos induced by the frustration of interaction in a non-monotonic sequential associative memory model, and showed the chaotic behaviors at absolute zero. We have now analyzed bifurcation in a stochastic system, namely a finite-temperature model of the non-monotonic sequential associative memory model. We derived order-parameter equations from the stochastic microscopic equations. Two-parameter bifurcation diagrams obtained from those equations show the coexistence of attractors, which do not appear at absolute zero, and the disappearance of chaos due to the temperature effect.Comment: 19 page

    Impacts of Mixed-Wettability on Brine Drainage and Supercritical CO2 Storage Efficiency in a 2.5-D Heterogeneous Micromodel

    Get PDF
    Geological carbon storage (GCS) involves unstable drainage processes, the formation of patterns in a morphologically unstable interface between two fluids in a porous medium during drainage. The unstable drainage processes affect CO2 storage efficiency and plume distribution and can be greatly complicated by the mixed-wet nature of rock surfaces common in hydrocarbon reservoirs where supercritical CO2 (scCO2) is used in enhanced oil recovery. We performed scCO2 injection (brine drainage) experiments at 8.5 MPa and 45°C in heterogeneous micromodels, two mixed-wet with varying water- and intermediate-wet patches, and one water-wet. The flow regime changes from capillary fingering through crossover to viscous fingering in the micromodels of the same pore geometry but different wetting surfaces at displacement rates with logCa (capillary number) increasing from −8.1 to −4.4. While the mixed-wet micromodel with uniformly distributed intermediate-wet patches yields ~0.15 scCO2 saturation increase at both capillary fingering and crossover flow regimes (−8.1 â‰¤ logCa â‰¤ − 6.1), the one heterogeneous wetting to scCO2 results in ~0.09 saturation increase only at the crossover flow regime (−7.1 â‰¤ logCa â‰¤ − 6.1). The interconnected flow paths in the former are quantified and compared to the channelized scCO2 flow through intermediate-wet patches in the latter by topological analysis. At logCa > − 6.1 (near well), the effects of wettability and pore geometry are suppressed by strong viscous force. Both scCO2 saturation and distribution suggest the importance of wettability on CO2 storage efficiency and plume shape in reservoirs and capillary leakage through caprock at GCS conditions

    Magnetic-field induced competition of two multiferroic orders in a triangular-lattice helimagnet MnI2

    Full text link
    Magnetic and dielectric properties with varying magnitude and direction of magnetic field H have been investigated for a triangular lattice helimagnet MnI2. The in-plane electric polarization P emerges in the proper screw magnetic ground state below 3.5 K, showing the rearrangement of six possible multiferroic domains as controlled by the in-plane H. With every 60-degree rotation of H around the [001]-axis, discontinuous 120-degree flop of P-vector is observed as a result of the flop of magnetic modulation vector q. With increasing the in-plane H above 3 T, however, the stable q-direction changes from q|| to q||, leading to a change of P-flop patterns under rotating H. At the critical field region (~3 T), due to the phase competition and resultant enhanced q-flexibility, P-vector smoothly rotates clockwise twice while H-vector rotates counter-clockwise once.Comment: 4 pages, 3 figures. Accepted in Physical Review Letter

    Perovskite Manganites Hosting Versatile Multiferroic Phases with Symmetric and Antisymmetric Exchange Strictions

    Full text link
    Complete magnetoelectric (ME) phase diagrams of orthorhombic RRMnO3_{3} with and without magnetic moments on the RR ions have been established. Three kinds of multiferroic ground states, the abab-cycloidal, the bcbc-cycloidal, and the collinear EE-type phases, have been identified by the distinct ME responses. The electric polarization of the EE-type phase dominated by the symmetric spin exchange (bmSicdotbmSjbm{S}_{i} cdot bm{S}_{j}) is more than 10 times as large as that of the bcbc-cycloidal phase dominated by the antisymmetric one (bmSitimesbmSjbm{S}_{i} times bm{S}_{j}), and the ME response is enhanced near the bicritical phase boundary between these multiferroic phases of different origins. These findings will provide an important clue for the development of the magnetically induced multiferroics.Comment: 5 pages, 3 figure

    Multiferroic properties of an \aa kermanite Sr2_2CoSi2_2O7_7 single crystal in high magnetic fields

    Full text link
    The magnetic and dielectric properties of \aa kermanite Sr2_2CoSi2_2O7_7 single crystals in high magnetic fields were investigated. We have observed finite induced electric polarization along the c axis in high fields, wherein all Co spins were forcibly aligned to the magnetic field direction. Existence of the induced polarization in the spin-polarized state accompanied with the finite slope in the magnetization curve suggests the possible role of the orbital angular momenta in the excited states as its microscopic origin. The emergence of the field-induced polarization without particular magnetic order can be regarded as the magnetoelectric effects of the second order from the symmetry point of view. A low magnetic field-driven electric polarization flip induced by a rotating field, even at room temperature, has been successfully demonstrated.Comment: 12 pages, 4 figure
    • …
    corecore