63 research outputs found
Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films
We report first-principle atomistic simulations on the effect of local strain
gradients on the nanoscale domain morphology of free-standing PbTiO
ultrathin films. First, the ferroelectric properties of free films at the
atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells),
we find flux-closure domain structures whose morphology is thickness dependent.
A critical value of 20 unit cells is observed: thinner films show structures
with 90 domain loops, whereas thicker ones develop, in addition,
180 domain walls, giving rise to structures of the Landau-Lifshitz
type. When a local and compressive strain gradient at the top surface is
imposed, the gradient is able to switch the polarization of the downward
domains, but not to the opposite ones. The evolution of the domain pattern as a
function of the strain gradient strength consequently depends on the film
thickness. Our simulations indicate that in thinner films, first the 90
domain loops migrate towards the strain-gradient region, and then the
polarization in that zone is gradually switched. In thicker films, instead, the
switching in the strain-gradient region is progressive, not involving
domain-wall motion, which is attributed to less mobile 180 domain
walls. The ferroelectric switching is understood based on the knowledge of the
local atomic properties, and the results confirm that mechanical
flexoelectricity provides a means to control the nanodomain pattern in
ferroelectric systems.Comment: 9 pages, 6 figure
Effects of the antiferrodistortive instability on the structural behavior of BaZrO by atomistic simulations
Recently, the possibility of a low-temperature non-cubic phase in BaZrO
has generated engaging discussions about its true ground state and the
consequences on its physical properties. In this paper, we investigate the
microscopic behavior of the BaZrO cubic phase by developing a shell model
from calculations and by performing molecular dynamics simulations
at finite temperature and under negative pressure. We study three different
scenarios created by tuning the intensities of the antiferrodistortive (AFD)
instabilities, and consequently, the sequence of phase transitions with
temperature. From a detailed analysis of the cubic phase at atomic scale, we
find that oxygen octahedra are barely distorted, present rotation angles that
may oscillate with significant amplitudes, are AFD correlated with their
closest neighbors on the plane perpendicular to the pseudocubic rotation axis
exhibiting -type ordering, and form instantaneous, dynamic and
unstable domains over time. Our simulations support the existence of
nanoregions with short-range ordering in cubic BaZrO associated with
experimentally observed anomalies and unveil that they can exist regardless of
whether or not structural phase transitions related with AFD distortions occur
at lower temperatures.Comment: 10 pages, 8 figure
First-principles-based simulations of relaxor ferroelectrics
The phenomenology of Pb(B,B')O3 perovskite-based relaxor ferroelectrics (RFE) is reviewed, with emphasis on the relationship between chemical short-range order and the formation of polar nanoregions in the temperature range between the "freezing" temperature, Tf, and the Burns temperature, TB. Results are presented for first-principles-based effective Hamiltonian simulations of Pb(Sc½Nb½)O3 (PSN), and simulations that were done with empirically modified variants of the PSN Hamiltonian. Arbitrarily increasing the magnitudes of local electric fields, caused by an increase in chemical disorder, broadens the dielectric peak, and reduces the ferroelectric (FE) transition temperature; and sufficiently strong local fields suppress the transition. Similar, but more dramatically glassy results are obtained by using the PSN dielectric model with a distribution of local fields that is appropriate for Pb(Mg⅓Nb⅔)O3 (PMN). The results of these simulations, and reviewed experimental data, strongly support the view that within the range Tf < T < TB, polar nanoregions are essentially the same as chemically ordered regions. In PSN a ferroelectric phase transition occurs, but in PMN, a combination of experimental and computational results indicate that pinning from local fields is strong enough to suppress the transition and glassy freezing is observed
Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure
Using a first-principles approach based on density-functional theory, we find
that a large tetragonal strain can be induced in PbTiO3 by application of a
negative hydrostatic pressure. The structural parameters and the dielectric and
dynamical properties are found to change abruptly near a crossover pressure,
displaying a ``kinky'' behavior suggestive of proximity to a phase transition.
Analogous calculations for BaTiO3 show that the same effect is also present
there, but at much higher negative pressure. We investigate this unexpected
behavior of PbTiO3 and discuss an interpretation involving a phenomenological
description in terms of a reduced set of relevant degrees of freedom.Comment: 9 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/st_pbti/index.htm
Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(InNb)O}
We examine a simple model for Pb(InNb)O (PIN), which
includes both long-range dipole-dipole interaction and random local anisotropy.
A improved algorithm optimized for long-range interaction has been applied for
efficient large-scale Monte Carlo simulation. We demonstrate that the phase
diagram of PIN is qualitatively reproduced by this minimum model. Some
properties characteristic of relaxors such as nano-scale domain formation, slow
dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure
Ab initio study of ferroelectric domain walls in PbTiO3
We have investigated the atomistic structure of the 180-degree and 90-degree
domain boundaries in the ferroelectric perovskite compound PbTiO3 using a
first-principles ultrasoft-pseudopotential approach. For each case we have
computed the position, thickness and creation energy of the domain walls, and
an estimate of the barrier height for their motion has been obtained. We find
both kinds of domain walls to be very narrow with a similar width of the order
of one to two lattice constants. The energy of the 90-dergree domain wall is
calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its
180-degree counterpart, and only a miniscule barrier for its motion is found.
As a surprising feature we detected a small offset of 0.15-0.2 eV in the
electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm
Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2
The results of investigations of intercalated compounds Cr_xTiSe_2 and
Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission
spectroscopy (XES) are presented. The data obtained are compared with
theoretical results of spin-polarized band structure calculations. A good
agreement between theoretical and experimental data for the electronic
structure of the investigated materials has been observed. The interplay
between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M
site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was
observed, which reveals a strong exchange magnetic interaction of 3d-2p
electrons of Cr. In the case of a strong localization of the Cr3d electrons
(for x<0.25), the broadening of the CrL spectra into the region of the states
above the nominal Fermi level was observed and attributed to X-ray re-emission.
The measured kinetic properties are in good accordance with spectral
investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.
Applications of the generalized gradient approximation to ferroelectric perovskites
The Perdew-Burke-Ernzerhof generalized gradient approximation to the density
functional theory is tested with respect to sensitivity to the choice of the
value of the parameter , which is associated to the degree of
localization of the exchange-correlation hole. A study of structural and
dynamical properties of four selected ferroelectric perovskites is presented.
The originally proposed value of =0.804 %(best suited for atoms and
molecules) works well for some solids, whereas for the ABO perovskites it
must be decreased in order to predict equilibrium lattice parameters in good
agreement with experiments. The effects on the structural instabilities and
zone center phonon modes are examined. The need of varying from one
system to another reflects the fact that the localization of the
exchange-correlation hole is system dependent, and the sensitivity of the
structural properties to its actual value illustrates the necessity of finding
a universal function for .Comment: 15 pages, 2 figures, PRB in pres
The polarizability model for ferroelectricity in perovskite oxides
This article reviews the polarizability model and its applications to
ferroelectric perovskite oxides. The motivation for the introduction of the
model is discussed and nonlinear oxygen ion polarizability effects and their
lattice dynamical implementation outlined. While a large part of this work is
dedicated to results obtained within the self-consistent-phonon approximation
(SPA), also nonlinear solutions of the model are handled which are of interest
to the physics of relaxor ferroelectrics, domain wall motions, incommensurate
phase transitions. The main emphasis is to compare the results of the model
with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure
- …