63 research outputs found

    Strain-gradient-induced switching of nanoscale domains in free-standing ultrathin films

    Get PDF
    We report first-principle atomistic simulations on the effect of local strain gradients on the nanoscale domain morphology of free-standing PbTiO3_3 ultrathin films. First, the ferroelectric properties of free films at the atomic level are reviewed. For the explored thicknesses (10 to 23 unit cells), we find flux-closure domain structures whose morphology is thickness dependent. A critical value of 20 unit cells is observed: thinner films show structures with 90∘^\circ domain loops, whereas thicker ones develop, in addition, 180∘^\circ domain walls, giving rise to structures of the Landau-Lifshitz type. When a local and compressive strain gradient at the top surface is imposed, the gradient is able to switch the polarization of the downward domains, but not to the opposite ones. The evolution of the domain pattern as a function of the strain gradient strength consequently depends on the film thickness. Our simulations indicate that in thinner films, first the 90∘^\circ domain loops migrate towards the strain-gradient region, and then the polarization in that zone is gradually switched. In thicker films, instead, the switching in the strain-gradient region is progressive, not involving domain-wall motion, which is attributed to less mobile 180∘^\circ domain walls. The ferroelectric switching is understood based on the knowledge of the local atomic properties, and the results confirm that mechanical flexoelectricity provides a means to control the nanodomain pattern in ferroelectric systems.Comment: 9 pages, 6 figure

    Effects of the antiferrodistortive instability on the structural behavior of BaZrO3_3 by atomistic simulations

    Full text link
    Recently, the possibility of a low-temperature non-cubic phase in BaZrO3_3 has generated engaging discussions about its true ground state and the consequences on its physical properties. In this paper, we investigate the microscopic behavior of the BaZrO3_3 cubic phase by developing a shell model from ab initioab~initio calculations and by performing molecular dynamics simulations at finite temperature and under negative pressure. We study three different scenarios created by tuning the intensities of the antiferrodistortive (AFD) instabilities, and consequently, the sequence of phase transitions with temperature. From a detailed analysis of the cubic phase at atomic scale, we find that oxygen octahedra are barely distorted, present rotation angles that may oscillate with significant amplitudes, are AFD correlated with their closest neighbors on the plane perpendicular to the pseudocubic rotation axis exhibiting (00a−)(0 0 a^-)-type ordering, and form instantaneous, dynamic and unstable domains over time. Our simulations support the existence of nanoregions with short-range ordering in cubic BaZrO3_3 associated with experimentally observed anomalies and unveil that they can exist regardless of whether or not structural phase transitions related with AFD distortions occur at lower temperatures.Comment: 10 pages, 8 figure

    First-principles-based simulations of relaxor ferroelectrics

    Get PDF
    The phenomenology of Pb(B,B')O3 perovskite-based relaxor ferroelectrics (RFE) is reviewed, with emphasis on the relationship between chemical short-range order and the formation of polar nanoregions in the temperature range between the "freezing" temperature, Tf, and the Burns temperature, TB. Results are presented for first-principles-based effective Hamiltonian simulations of Pb(Sc½Nb½)O3 (PSN), and simulations that were done with empirically modified variants of the PSN Hamiltonian. Arbitrarily increasing the magnitudes of local electric fields, caused by an increase in chemical disorder, broadens the dielectric peak, and reduces the ferroelectric (FE) transition temperature; and sufficiently strong local fields suppress the transition. Similar, but more dramatically glassy results are obtained by using the PSN dielectric model with a distribution of local fields that is appropriate for Pb(Mg⅓Nb⅔)O3 (PMN). The results of these simulations, and reviewed experimental data, strongly support the view that within the range Tf < T < TB, polar nanoregions are essentially the same as chemically ordered regions. In PSN a ferroelectric phase transition occurs, but in PMN, a combination of experimental and computational results indicate that pinning from local fields is strong enough to suppress the transition and glassy freezing is observed

    Anomalous enhancement of tetragonality in PbTiO3 induced by negative pressure

    Full text link
    Using a first-principles approach based on density-functional theory, we find that a large tetragonal strain can be induced in PbTiO3 by application of a negative hydrostatic pressure. The structural parameters and the dielectric and dynamical properties are found to change abruptly near a crossover pressure, displaying a ``kinky'' behavior suggestive of proximity to a phase transition. Analogous calculations for BaTiO3 show that the same effect is also present there, but at much higher negative pressure. We investigate this unexpected behavior of PbTiO3 and discuss an interpretation involving a phenomenological description in terms of a reduced set of relevant degrees of freedom.Comment: 9 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/st_pbti/index.htm

    Monte Carlo Study of Relaxor Systems: A Minimum Model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3}

    Full text link
    We examine a simple model for Pb(In1/2_{1/2}Nb1/2_{1/2})O3_3 (PIN), which includes both long-range dipole-dipole interaction and random local anisotropy. A improved algorithm optimized for long-range interaction has been applied for efficient large-scale Monte Carlo simulation. We demonstrate that the phase diagram of PIN is qualitatively reproduced by this minimum model. Some properties characteristic of relaxors such as nano-scale domain formation, slow dynamics and dispersive dielectric responses are also examined.Comment: 5 pages, 4 figure

    Ab initio study of ferroelectric domain walls in PbTiO3

    Full text link
    We have investigated the atomistic structure of the 180-degree and 90-degree domain boundaries in the ferroelectric perovskite compound PbTiO3 using a first-principles ultrasoft-pseudopotential approach. For each case we have computed the position, thickness and creation energy of the domain walls, and an estimate of the barrier height for their motion has been obtained. We find both kinds of domain walls to be very narrow with a similar width of the order of one to two lattice constants. The energy of the 90-dergree domain wall is calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its 180-degree counterpart, and only a miniscule barrier for its motion is found. As a surprising feature we detected a small offset of 0.15-0.2 eV in the electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm

    Electronic structure of Co_xTiSe_2 and Cr_xTiSe_2

    Full text link
    The results of investigations of intercalated compounds Cr_xTiSe_2 and Co_xTiSe_2 by X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES) are presented. The data obtained are compared with theoretical results of spin-polarized band structure calculations. A good agreement between theoretical and experimental data for the electronic structure of the investigated materials has been observed. The interplay between the M3d--Ti3d hybridization (M=Cr, Co) and the magnetic moment at the M site is discussed. A 0.9 eV large splitting of the core Cr2p{3/2} level was observed, which reveals a strong exchange magnetic interaction of 3d-2p electrons of Cr. In the case of a strong localization of the Cr3d electrons (for x<0.25), the broadening of the CrL spectra into the region of the states above the nominal Fermi level was observed and attributed to X-ray re-emission. The measured kinetic properties are in good accordance with spectral investigations and band calculation results.Comment: 14 pages, 11 figures, submitted to Phys.Rev.

    Applications of the generalized gradient approximation to ferroelectric perovskites

    Full text link
    The Perdew-Burke-Ernzerhof generalized gradient approximation to the density functional theory is tested with respect to sensitivity to the choice of the value of the parameter κ\kappa, which is associated to the degree of localization of the exchange-correlation hole. A study of structural and dynamical properties of four selected ferroelectric perovskites is presented. The originally proposed value of κ\kappa=0.804 %(best suited for atoms and molecules) works well for some solids, whereas for the ABO3_3 perovskites it must be decreased in order to predict equilibrium lattice parameters in good agreement with experiments. The effects on the structural instabilities and zone center phonon modes are examined. The need of varying κ\kappa from one system to another reflects the fact that the localization of the exchange-correlation hole is system dependent, and the sensitivity of the structural properties to its actual value illustrates the necessity of finding a universal function for κ\kappa.Comment: 15 pages, 2 figures, PRB in pres

    The polarizability model for ferroelectricity in perovskite oxides

    Full text link
    This article reviews the polarizability model and its applications to ferroelectric perovskite oxides. The motivation for the introduction of the model is discussed and nonlinear oxygen ion polarizability effects and their lattice dynamical implementation outlined. While a large part of this work is dedicated to results obtained within the self-consistent-phonon approximation (SPA), also nonlinear solutions of the model are handled which are of interest to the physics of relaxor ferroelectrics, domain wall motions, incommensurate phase transitions. The main emphasis is to compare the results of the model with experimental data and to predict novel phenomena.Comment: 55 pages, 35 figure
    • …
    corecore