1,883 research outputs found

    The source ambiguity problem: Distinguishing the effects of grammar and processing on acceptability judgments

    Get PDF
    Judgments of linguistic unacceptability may theoretically arise from either grammatical deviance or significant processing difficulty. Acceptability data are thus naturally ambiguous in theories that explicitly distinguish formal and functional constraints. Here, we consider this source ambiguity problem in the context of Superiority effects: the dispreference for ordering a wh-phrase in front of a syntactically “superior” wh-phrase in multiple wh-questions, e.g., What did who buy? More specifically, we consider the acceptability contrast between such examples and so-called D-linked examples, e.g., Which toys did which parents buy? Evidence from acceptability and self-paced reading experiments demonstrates that (i) judgments and processing times for Superiority violations vary in parallel, as determined by the kind of wh-phrases they contain, (ii) judgments increase with exposure, while processing times decrease, (iii) reading times are highly predictive of acceptability judgments for the same items, and (iv) the effects of the complexity of the wh-phrases combine in both acceptability judgments and reading times. This evidence supports the conclusion that D-linking effects are likely reducible to independently motivated cognitive mechanisms whose effects emerge in a wide range of sentence contexts. This in turn suggests that Superiority effects, in general, may owe their character to differential processing difficulty

    Time-Resolved Studies of Stick-Slip Friction in Sheared Granular Layers

    Full text link
    Sensitive and fast force measurements are performed on sheared granular layers undergoing stick-slip motion, along with simultaneous imaging. A full study has been done for spherical particles with a +-20% size distribution. Stick-slip motion due to repetitive fluidization of the layer occurs for low driving velocities. Between major slip events, slight creep occurs that is variable from one event to the next. The effects of changing the stiffness k and velocity V of the driving system are studied in detail. The stick-slip motion is almost periodic for spherical particles over a wide range of parameters, but becomes irregular when k is large and V is relatively small. At larger V, the motion becomes smoother and is affected by the inertia of the upper plate bounding the layer. Measurements of the period T and amplitude A of the relative motion are presented as a function of V. At a critical value Vc, a transition to continuous sliding motion occurs that is discontinuous for k not too large. The time dependence of the instantaneous velocity of the upper plate and the frictional force produced by the granular layer are determined within individual slipping events. The force is a multi-valued function of the instantaneous velocity, with pronounced hysteresis and a sudden drop prior to resticking. Measurements of vertical displacement reveal a small dilation of the material (about one tenth of the mean particle size in a layer 20 particles deep) associated with each slip event. Finally, optical imaging reveals that localized microscopic rearrangements precede (and follow) each slip event. The behavior of smooth particles is contrasted with that of rough particles.Comment: 20, pages, 17 figures, to appear in Phys. Rev.

    Velocity and density profiles of granular flow in channels using lattice gas automaton

    Full text link
    We have performed two-dimensional lattice-gas-automaton simulations of granular flow between two parallel planes. We find that the velocity profiles have non-parabolic distributions while simultaneously the density profiles are non-uniform. Under non-slip boundary conditions, deviation of velocity profiles from the parabolic form of newtonian fluids is found to be characterized solely by ratio of maximal velocity at the center to the average velocity, though the ratio depends on the model parameters in a complex manner. We also find that the maximal velocity (umaxu_{max}) at the center is a linear function of the driving force (g) as umax=αgδu_{max} = \alpha g - \delta with non-zero δ\delta in contrast with newtonian fluids. Regarding density profiles, we observe that densities near the boundaries are higher than those in the center. The width of higher densities (above the average density) relative to the channel width is a decreasing function of a variable which scales with the driving force (g), energy dissipation parameter (ϵ\epsilon) and the width of the system (L) as gμLν/ϵg^{\mu} L^{\nu}/\epsilon with exponents μ=1.4±0.1\mu = 1.4 \pm 0.1 and ν=0.5±0.1\nu = 0.5 \pm 0.1. A phenomenological theory based on a scaling argument is presented to interpret these findings.Comment: Latex, 15 figures, to appear in PR

    Mechanisms for slow strengthening in granular materials

    Full text link
    Several mechanisms cause a granular material to strengthen over time at low applied stress. The strength is determined from the maximum frictional force F_max experienced by a shearing plate in contact with wet or dry granular material after the layer has been at rest for a waiting time \tau. The layer strength increases roughly logarithmically with \tau -only- if a shear stress is applied during the waiting time. The mechanisms of strengthening are investigated by sensitive displacement measurements and by imaging of particle motion in the shear zone. Granular matter can strengthen due to a slow shift in the particle arrangement under shear stress. Humidity also leads to strengthening, but is found not to be its sole cause. In addition to these time dependent effects, the static friction coefficient can also be increased by compaction of the granular material under some circumstances, and by cycling of the applied shear stress.Comment: 21 pages, 11 figures, submitted to Phys. Rev.

    Static Friction Phenomena in Granular Materials: Coulomb Law vs. Particle Geometry

    Full text link
    The static as well as the dynamic behaviour of granular material are determined by dynamic {\it and} static friction. There are well known methods to include static friction in molecular dynamics simulations using scarcely understood forces. We propose an Ansatz based on the geometrical shape of nonspherical particles which does not involve an explicit expression for static friction. It is shown that the simulations based on this model are close to experimental results.Comment: 11 pages, Revtex, HLRZ-33/9

    Density waves and 1/f1/f density fluctuations in granular flow

    Full text link
    We simulate the granular flow in a narrow pipe with a lattice-gas automaton model. We find that the density in the system is characterized by two features. One is that spontaneous density waves propagate through the system with well-defined shapes and velocities. The other is that density waves are so distributed to make the power spectra of density fluctuations as 1/fα1/f^{\alpha} noise. Three important parameters make these features observable and they are energy dissipation, average density and the rougness of the pipe walls.Comment: Latex (with ps files appended

    ASAS-SN follow-up of IceCube high-energy neutrino alerts

    Full text link
    We report on the search for optical counterparts to IceCube neutrino alerts released between April 2016 and August 2021 with the All-Sky Automated Survey for SuperNovae (ASAS-SN). Despite the discovery of a diffuse astrophysical high-energy neutrino flux in 2013, the source of those neutrinos remains largely unknown. Since 2016, IceCube has published likely-astrophysical neutrinos as public realtime alerts. Through a combination of normal survey and triggered target-of-opportunity observations, ASAS-SN obtained images within 1 hour of the neutrino detection for 20% (11) of all observable IceCube alerts and within one day for another 57% (32). For all observable alerts, we obtained images within at least two weeks from the neutrino alert. ASAS-SN provides the only optical follow-up for about 17% of IceCube's neutrino alerts. We recover the two previously claimed counterparts to neutrino alerts, the flaring-blazar TXS 0506+056 and the tidal disruption event AT2019dsg. We investigate the light curves of previously-detected transients in the alert footprints, but do not identify any further candidate neutrino sources. We also analysed the optical light curves of Fermi 4FGL sources coincident with high-energy neutrino alerts, but do not identify any contemporaneous flaring activity. Finally, we derive constraints on the luminosity functions of neutrino sources for a range of assumed evolution models

    HARP/ACSIS: A submillimetre spectral imaging system on the James Clerk Maxwell Telescope

    Full text link
    This paper describes a new Heterodyne Array Receiver Programme (HARP) and Auto-Correlation Spectral Imaging System (ACSIS) that have recently been installed and commissioned on the James Clerk Maxwell Telescope (JCMT). The 16-element focal-plane array receiver, operating in the submillimetre from 325 to 375 GHz, offers high (three-dimensional) mapping speeds, along with significant improvements over single-detector counterparts in calibration and image quality. Receiver temperatures are \sim120 K across the whole band and system temperatures of \sim300K are reached routinely under good weather conditions. The system includes a single-sideband filter so these are SSB figures. Used in conjunction with ACSIS, the system can produce large-scale maps rapidly, in one or more frequency settings, at high spatial and spectral resolution. Fully-sampled maps of size 1 square degree can be observed in under 1 hour. The scientific need for array receivers arises from the requirement for programmes to study samples of objects of statistically significant size, in large-scale unbiased surveys of galactic and extra-galactic regions. Along with morphological information, the new spectral imaging system can be used to study the physical and chemical properties of regions of interest. Its three-dimensional imaging capabilities are critical for research into turbulence and dynamics. In addition, HARP/ACSIS will provide highly complementary science programmes to wide-field continuum studies, and produce the essential preparatory work for submillimetre interferometers such as the SMA and ALMA.Comment: MNRAS Accepted 2009 July 2. 18 pages, 25 figures and 6 table

    A model for collisions in granular gases

    Full text link
    We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.Comment: 11 pages, 2 figure

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure
    corecore