941 research outputs found

    Imaging reconstruction for infrared interferometry: first images of YSOs environment

    Full text link
    The study of protoplanetary disks, where the planets are believed to form, will certainly allow the formation of our Solar System to be understood. To conduct observations of these objects at the milli-arcsecond scale, infrared interferometry provides the right performances for T Tauri, FU Ori or Herbig Ae/Be stars. However, the only information obtained so far are scarce visibility measurements which are directly tested with models. With the outcome of recent interferometers, one can foresee obtaining images reconstructed independently of the models. In fact, several interferometers including IOTA and AMBER on the VLTI already provide the possibility to recombine three telescopes at once and thus to obtain the data necessary to reconstruct images. In this paper, we describe the use of MIRA, an image reconstruction algorithm developed for optical inter- ferometry data (squared visibilities and closure phases) by E. Thiebaut. We foresee also to use the spectral information given by AMBER data to constrain even better the reconstructed images. We describe the use of MIRA to reconstruct images of young stellar objects out of actual data, in particular the multiple system GW Orionis (IOTA, 2004), and discuss the encountered difficulties.Comment: 10 pages, 6 figures, Proc. SPIE conference 7013 "Optical and Infrared Interferometry" (Marseille 2008

    High dynamic range imaging by pupil single-mode filtering and remapping

    Get PDF
    Because of atmospheric turbulence, obtaining high angular resolution images with a high dynamic range is difficult even in the near infrared domain of wavelengths. We propose a novel technique to overcome this issue. The fundamental idea is to apply techniques developed for long baseline interferometry to the case of a single-aperture telescope. The pupil of the telescope is broken down into coherent sub-apertures each feeding a single-mode fiber. A remapping of the exit pupil allows interfering all sub-apertures non-redundantly. A diffraction-limited image with very high dynamic range is reconstructed from the fringe pattern analysis with aperture synthesis techniques, free of speckle noise. The performances of the technique are demonstrated with simulations in the visible range with an 8 meter telescope. Raw dynamic ranges of 1:10610^6 can be obtained in only a few tens of seconds of integration time for bright objects.Comment: 5 pages, 3 figures. accepted for publication in MNRA

    Imaging the spotty surface of Betelgeuse in the H band

    Full text link
    This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references adde

    Dynamical Masses of Young Stars in Multiple Systems

    Full text link
    We present recent measurements of the orbital motion in the young binaries DF Tau and ZZ Tau, and the hierarchical triple Elias 12, that were obtained with the Fine Guidance Sensors on the HST and at the Keck Observatory using adaptive optics. Combining these observations with previous measurements from the literature, we compute preliminary orbital parameters for DF Tau and ZZ Tau. We find that the orbital elements cannot yet be determined precisely because the orbital coverage spans only about 90 degr in position angle. Nonetheless, the range of possible values for the period and semi-major axis already defines a useful estimate for the total mass in DF Tau and ZZ Tau, with values of 0.90{+0.85}{-0.35} M_sun and 0.81{+0.44}{-0.25} M_sun, respectively, at a fiducial distance of 140 pc.Comment: 26 pages, 9 figures, accepted for publication in A

    Validation of a control-oriented point vortex model for a cyclorotor-based wave energy device

    Get PDF
    Recently conducted analytical assessment of the potential performance of cyclorotor wave energy converters (WECs) have shown that such devices offer the best wave absorption behaviour, if energy capture can be optimised through suitable control. Such claims require additional investigation. This article is dedicated to validation of the control-oriented point vortex model of cyclorotor WECs against numerical and experimental assessments conducted by various research groups. The validation is conducted in terms of the traditional metrics for cyclorotor WECs: (a) cancellation of incoming waves; (b) generation of lift and drag forces (c) mechanical power generation. It is shown that the point vortex model generally confirms the previously conducted analytical assessment of device performance. However, accounting for the influence of the hydrofoil induced wakes decreases performance estimates to some extent. It is also shown that, overall, wave cancellation metrics are more optimistic than actual shaft power generation. Analysis of the lift and drag coefficients, which were derived from experimental data, reveal a range of hydrodynamic and mechanic effects which could influence actual device performance. It has been shown that, due to the complexity of hydrodynamic effects, lift and drag coefficients for the control-oriented model should be considered not only as functions of the Reynolds number and angle of attack, but also related to submergence of the foils and direction of their rotation with respect to the free surface. This method allows us to achieve the best validation against experimental results in terms of generation of tangential and radial forces

    A framework for focal and connectomic mapping of transiently disrupted brain function

    Get PDF
    The distributed nature of the neural substrate, and the difficulty of establishing necessity from correlative data, combine to render the mapping of brain function a far harder task than it seems. Methods capable of combining connective anatomical information with focal disruption of function are needed to disambiguate local from global neural dependence, and critical from merely coincidental activity. Here we present a comprehensive framework for focal and connective spatial inference based on sparse disruptive data, and demonstrate its application in the context of transient direct electrical stimulation of the human medial frontal wall during the pre-surgical evaluation of patients with focal epilepsy. Our framework formalizes voxel-wise mass-univariate inference on sparsely sampled data within the statistical parametric mapping framework, encompassing the analysis of distributed maps defined by any criterion of connectivity. Applied to the medial frontal wall, this transient dysconnectome approach reveals marked discrepancies between local and distributed associations of major categories of motor and sensory behaviour, revealing differentiation by remote connectivity to which purely local analysis is blind. Our framework enables disruptive mapping of the human brain based on sparsely sampled data with minimal spatial assumptions, good statistical efficiency, flexible model formulation, and explicit comparison of local and distributed effects

    A Test of Pre-Main Sequence Evolutionary Models Across the Stellar/Substellar Boundary Based on Spectra of the Young Quadruple GG Tau

    Get PDF
    We present spatially separated optical spectra of the components of the young hierarchical quadruple GG Tau. Spectra of GG Tau Aa and Ab (separation 0".25 ~ 35 AU) were obtained with the Faint Object Spectrograph aboard the Hubble Space Telescope. Spectra of GG Tau Ba and Bb (separation 1".48 ~ 207 AU) were obtained with both the HIRES and the LRIS spectrographs on the W. M. Keck telescopes. The components of this mini-cluster, which span a wide range in spectral type (K7 - M7), are used to test both evolutionary models and the temperature scale for very young, low mass stars under the assumption of coeval formation. Of the evolutionary models tested, those of Baraffe et al. (1998, A&A, 337, 403) yield the most consistent ages when combined with a temperature scale intermediate between that of dwarfs and giants. The version of the Baraffe et al. models computed with a mixing length nearly twice the pressure scale height is of particular interest as it predicts masses for GG Tau Aa and Ab that are in agreement with their dynamical mass estimate. Using this evolutionary model and a coeval (at 1.5 Myrs) temperature scale, we find that the coldest component of the GG Tau system, GG Tau Bb, is substellar with a mass of 0.044 +/- 0.006 Msun. This brown dwarf companion is especially intriguing as it shows signatures of accretion, although this accretion is not likely to alter its mass significantly. GG Tau Bb is currently the lowest mass, spectroscopically confirmed companion to a T Tauri star, and is one of the coldest, lowest mass T Tauri objects in the Taurus-Auriga star forming region.Comment: 25 pages, 6 figures, accepted for publication in The Astrophysical Journa

    Observations of T-Tauri Stars using HST-GHRS: I. Far Ultraviolet Emission Lines

    Get PDF
    We have analyzed GHRS data of eight CTTS and one WTTS. The GHRS data consists of spectral ranges 40 A wide centered on 1345, 1400, 1497, 1550, and 1900 A. These UV spectra show strong SiIV, and CIV emission, and large quantities of sharp (~40 km/s) H2 lines. All the H2 lines belong to the Lyman band and all the observed lines are single peaked and optically thin. The averages of all the H2 lines centroids for each star are negative which may indicate that they come from an outflow. We interpret the emission in H2 as being due to fluorescence, mostly by Ly_alpha, and identify seven excitation routes within 4 A of that line. We obtain column densities (10^12 to 10^15 cm^-2) and optical depths (~1 or less) for each exciting transition. We conclude that the populations are far from being in thermal equilibrium. We do not observe any lines excited from the far blue wing of Ly_alpha, which implies that the molecular features are excited by an absorbed profile. SiIV and CIV (corrected for H2 emission) have widths of ~200 km/s, and an array of centroids (blueshifted lines, centered, redshifted). These characteristics are difficult to understand in the context of current models of the accretion shock. For DR Tau we observe transient strong blueshifted emission, perhaps the a result of reconnection events in the magnetosphere. We also see evidence of multiple emission regions for the hot lines. While CIV is optically thin in most stars in our sample, SiIV is not. However, CIV is a good predictor of SiIV and H2 emission. We conclude that most of the flux in the hot lines may be due to accretion processes, but the line profiles can have multiple and variable components.Comment: 67 pages, 19 figures, Accepted in Ap
    • 

    corecore