234 research outputs found

    Static dielectric response and Born effective charge of BN nanotubes from {\it ab initio} finite electric field calculations

    Full text link
    {\it Ab initio} investigations of the full static dielectric response and Born effective charge of BN nanotubes (BN-NTs) have been performed for the first time using finite electric field method. It is found that the ionic contribution to the static dielectric response of BN-NTs is substantial and also that a pronounced chirality-dependent oscillation is superimposed on the otherwise linear relation between the longitudinal electric polarizability and the tube diameter (DD), as for a thin dielectric cylinderical shell. In contrast, the transverse dielectric response of the BN-NTs resemble the behavior of a thin (non-ideal) conducting cylindrical shell of a diameter of D+4D+4\AA , with a screening factor of 2 for the inner electric field. The medium principal component Zy∗Z_y^* of the Born effective charge corresponding to the transverse atomic displacement tangential to the BN-NT surface, has a pronounced DD-dependence (but independent of chirality), while the large longitudinal component Zz∗Z_z^* exhibits a clear chirality dependence (but nearly DD-independent), suggesting a powerful way to characterize the diameter and chirality of a BN-NT.Comment: submitted to PR

    Structural distortions and model Hamiltonian parameters: from LSDA to a tight-binding description of LaMnO_3

    Full text link
    The physics of manganites is often described within an effective two-band tight-binding (TB) model for the Mn e_g electrons, which apart from the kinetic energy includes also a local "Hund's rule" coupling to the t_{2g} core spin and a local coupling to the Jahn-Teller (JT) distortion of the oxygen octahedra. We test the validity of this model by comparing the energy dispersion calculated for the TB model with the full Kohn-Sham band-structure calculated within the local spin-density approximation (LSDA) to density functional theory. We analyze the effect of magnetic order, JT distortions, and "GdFeO_3-type" tilt-rotations of the oxygen octahedra. We show that the hopping amplitudes are independent of magnetic order and JT distortions, and that both effects can be described with a consistent set of model parameters if hopping between both nearest and next-nearest neighbors is taken into account. We determine a full set of model parameters from the density functional theory calculations, and we show that both JT distortions and Hund's rule coupling are required to obtain an insulating ground state within LSDA. Furthermore, our calculations show that the "GdFeO_3-type" rotations of the oxygen octahedra lead to a substantial reduction of the hopping amplitudes but to no significant deviation from the simple TB model.Comment: replaced with final (published) version with improved presentatio

    Pressure-induced enhancement of superconductivity and superconducting-superconducting transition in CaC_6\_6

    Get PDF
    We measured the electrical resistivity, ϱ(T)\varrho(T), of superconducting CaC_6\_6 at ambient and high pressure up to 16 GPa. For P≤P \leq8 GPa, we found a large increase of T_cT\_c with pressure from 11.5 up to 15.1 K. At 8 GPa, T_cT\_c drops and levels off at 5 K above 10 GPa. Correspondingly, the residual ϱ\varrho increases by ≈\approx 200 times and the ϱ(T)\varrho(T) behavior becomes flat. The recovery of the pristine behavior after depressurization is suggestive of a phase transition at 8 GPa between two superconducting phases with good and bad metallic properties, the latter with a lower T_cT\_c and more static disorder

    Interplay between Nitrogen Dopants and Native Point Defects in Graphene

    Full text link
    To understand the interaction between nitrogen dopants and native point defects in graphene, we have studied the energetic stability of N-doped graphene with vacancies and Stone-Wales (SW) defect by performing the density functional theory calculations. Our results show that N substitution energetically prefers to occur at the carbon atoms near the defects, especially for those sites with larger bond shortening, indicating that the defect-induced strain plays an important role in the stability of N dopants in defective graphene. In the presence of monovacancy, the most stable position for N dopant is the pyridinelike configuration, while for other point defects studied (SW defect and divacancies) N prefers a site in the pentagonal ring. The effect of native point defects on N dopants is quite strong: While the N doping is endothermic in defect-free graphene, it becomes exothermic for defective graphene. Our results imply that the native point defect and N dopant attract each other, i.e., cooperative effect, which means that substitutional N dopants would increase the probability of point defect generation and vice versa. Our findings are supported by recent experimental studies on the N doping of graphene. Furthermore we point out possibilities of aggregation of multiple N dopants near native point defects. Finally we make brief comments on the effect of Fe adsorption on the stability of N dopant aggregation.Comment: 10 pages, 5 figures. Figure 4(g) and Figure 5 are corrected. One additional table is added. This is the final version for publicatio

    Anomalous Hall Effect and Magnetic Monopoles in Momentum-Space

    Full text link
    Efforts to find the magnetic monopole in real space have been made in cosmic rays and in accelerators, but up to now there is no firm evidence for its existence due to the very heavy mass ∼1016\sim 10^{16}GeV. However, we show that the magnetic monopole can appear in the crystal-momentum space of solids in the accessible low energy region (∼0.1−1\sim0.1-1eV) in the context of the anomalous Hall effect. We report experimental results together with first-principles calculations on the ferromagnetic crystal SrRuO3_3 that provide evidence for the magnetic monopole in the crystal-momentum space.Comment: 4 figures, the supporting-online-materails are include
    • …
    corecore