33 research outputs found

    Induction of apoptosis of human primary osteoclasts treated with extracts from the medicinal plant Emblica officinalis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Osteoclasts (OCs) are involved in rheumatoid arthritis and in several pathologies associated with bone loss. Recent results support the concept that some medicinal plants and derived natural products are of great interest for developing therapeutic strategies against bone disorders, including rheumatoid arthritis and osteoporosis. In this study we determined whether extracts of <it>Emblica officinalis </it>fruits display activity of possible interest for the treatment of rheumatoid arthritis and osteoporosis by activating programmed cell death of human primary osteoclasts.</p> <p>Methods</p> <p>The effects of extracts from <it>Emblica officinalis </it>on differentiation and survival of human primary OCs cultures obtained from peripheral blood were determined by tartrate-acid resistant acid phosphatase (TRAP)-positivity and colorimetric MTT assay. The effects of <it>Emblica officinalis </it>extracts on induction of OCs apoptosis were studied using TUNEL and immunocytochemical analysis of FAS receptor expression. Finally, <it>in vitro </it>effects of <it>Emblica officinalis </it>extracts on NF-kB transcription factor activity were determined by gel shift experiments.</p> <p>Results</p> <p>Extracts of <it>Emblica officinalis </it>were able to induce programmed cell death of mature OCs, without altering, at the concentrations employed in our study, the process of osteoclastogenesis. <it>Emblica officinalis </it>increased the expression levels of Fas, a critical member of the apoptotic pathway. Gel shift experiments demonstrated that <it>Emblica officinalis </it>extracts act by interfering with NF-kB activity, a transcription factor involved in osteoclast biology. The data obtained demonstrate that <it>Emblica officinalis </it>extracts selectively compete with the binding of transcription factor NF-kB to its specific target DNA sequences. This effect might explain the observed effects of <it>Emblica officinalis </it>on the expression levels of interleukin-6, a NF-kB specific target gene.</p> <p>Conclusion</p> <p>Induction of apoptosis of osteoclasts could be an important strategy both in interfering with rheumatoid arthritis complications of the bone skeleton leading to joint destruction, and preventing and reducing osteoporosis. Accordingly, we suggest the application of <it>Emblica officinalis </it>extracts as an alternative tool for therapy applied to bone diseases.</p

    Electrical conduction in cerate ceramics

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D188897 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    A review of minodronic acid hydrate for the treatment of osteoporosis

    No full text
    Shinji Tanishima, Yasuo MorioDepartment of Orthopedic Surgery, Misasa Onsen Hospital, Misasa, Tottori, JapanAbstract: Minodronic acid hydrate was the first bisphosphonate developed and approved for osteoporosis treatment in Japan. With regard to inhibition of bone resorption, minodronic acid hydrate is 1000 times more effective than etidronic acid and 10&ndash;100 times more effective than alendronic acid. Clinical trials conducted to date have focused on postmenopausal female patients suffering from primary osteoporosis. In these trials, 1 mg of oral minodronic acid hydrate was administrated once daily, and a significant increase was observed in lumbar-spine and hip-joint bone density 1&ndash;2 years after administration. All markers of bone metabolism urinary collagen type 1 cross-linked N-telopeptide, urinary free deoxypyridinoline, serum bone alkaline phosphatase, and serum osteocalcin were decreased. The incidence rate of new vertebral and nonvertebral fractures was also decreased. Therefore, effectiveness in fracture prevention was confirmed. A form of minodronic acid (50 mg) requiring once-monthly administration has been developed and is currently being used clinically. A comparative study between this new formulation and once-daily minodronic acid (1 mg) showed no significant differences between the two formulations in terms of improvement rates in lumbar-spine and hip-joint bone density, changes in bone metabolism markers, or incidence of side effects. This indicates the noninferiority of the monthly formulation. Side effects such as osteonecrosis of the jaw or atypical femoral fractures were not reported with other bisphosphonates, although it is believed that these side effects may emerge as future studies continue to be conducted. On the basis of studies conducted to date, minodronic acid hydrate is considered effective for improving bone density and preventing fractures. We anticipate further investigations in the future.Keywords: osteoporosis, minodronic acid hydrate, treatment, bisphosphonat
    corecore