28 research outputs found

    Dataset of the aqueous solution and petrochemical wastewater treatment containing ammonia using low cost and efficient bio-adsorbents

    Get PDF
    In this dataset, the removal of ammonia from synthetic and real wastewater was studied using the Ziziphus spina-christi activated carbon (ZSAC) and the biochar of Sargassum oligocystum (BSO). Several analyses such as FTIR, SEM, EDS, XRD, and BET were used to determine the physical and surface properties of the adsorbents. The BET analysis showed a high specific surface area of 112.5 and 45.8 m2/g for ZSAC and BSO, respectively. Also, the results indicated that the highest adsorption of ammonia from synthetic wastewater using ZSAC and BSO were obtained 97.9% and 96.2%, at contact time of 80 min, 25 °C, pH 8, and adsorbent dosage of 5 g/L. In addition, the adsorption results of real wastewater from Asaluyeh Pardis Petrochemical Company demonstrated that both adsorbents had the removal efficiency of approximately 90%, which indicates high adsorption efficiency using two adsorbents. Moreover, equilibrium studies showed that the adsorption process of ammonia from wastewater using both adsorbents follows the Freundlich model and the maximum adsorption capacity using the Langmuir isotherm were calculated to be 25.77 mg/g and 7.46 mg/g for ZSAC and BSO, respectively. Furthermore, the thermodynamic study showed that the adsorption process using the bio-adsorbents was spontaneous and exothermic

    Effects of encapsulated rosemary extract on oxidative and microbiological stability of beef meat during refrigerated storage

    No full text
    In this study, the effect of rosemary extract in two free and encapsulated forms to increase the shelf life of beef meat during a 28-day refrigerated storage period was investigated. For this purpose, rosemary was extracted using different extraction methods including ultrasound, solvent, and supercritical fluid extraction. The amount of phenolic compounds, antioxidant properties (free radical scavenging capacity of DPPH radical, ferric reducing antioxidant power), and antimicrobial activity of rosemary extract against pathogenic bacteria were evaluated. According to the results, the highest amount of phenolic compounds, antioxidant, and antimicrobial activity was observed in rosemary extracted by ultrasound method that used for next study (p < .05). In order to encapsulation of the rosemary extract, basil seed gum and soybean protein isolate separately and in combination form (1:1 w:w ratio) were used as carriers. Based on the particle size, zeta potential, and encapsulation efficiency tests, the best carriers were soybean protein isolate that used as a carrier for encapsulation. Then, to investigate the effect of rosemary extract to increase the shelf life of beef meat, 5 treatments including control, rosemary extract with concentrations of 800 ppm and 1,600 ppm, and nano-capsulation form of it with 800 ppm and 1,600 ppm concentrations were selected and they were periodically evaluated for chemical and microbial analysis (peroxide value, Thiobarbituric acid, color index, pH, and total viable count). The results showed that rosemary extract has an antimicrobial and antioxidant properties which could increasingly delay microbial spoilage and lipid oxidation of beef meat fillets, nano-capsulation form of rosemary could increase these qualities. The best results were observed in nano-capsulation of rosemary extract with 1,600 ppm (p < .05) as well as increased the shelf life of fillets till 21st day. Therefore, it seems that encapsulated rosemary extract could be used as a natural preservative in beef meat and meat products
    corecore