58 research outputs found

    Differential Diagnosis of Pancreatic Diseases Using PET

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Ferromagnetism and Superconductivity in Uranium Compounds

    Full text link
    Recent advances on ferromagnetic superconductors, UGe2, URhGe and UCoGe are presented. The superconductivity (SC) peacefully coexists with the ferromagnetism (FM), forming the spin-triplet state of Cooper pairs. The striking new phenomena, such as SC reinforced by the magnetic field, are associated with Ising-type ferromagnetic fluctuations. A variety of ferromagnetic ordered moments between UGe2, URhGe and UCoGe affords to understand the relation between FM, tricriticality and SC.Comment: 11 pages, 16 figures, accepted for publication in J. Phys. Soc. Jpn. as a review article of Special Topics of "Recent developments in superconductivity

    New insight into the effects of lead modulation on antioxidant defense mechanism and trace element concentration in rat bone

    Get PDF
    Risks of heavy metals-induced severe bone disorders generate interest to their toxicity. The present study was undertaken to monitor the biochemical and antioxidant status of bone of 30 and 80 days old male Wistar rats exposed to 5 week lead treatment. At the end of study, the rats were sacrificed, their long bone i.e. femur were excised, cleaned of soft tissue, minced and homogenized. Nucleic acid content, alkaline phosphatase, lipid peroxidation, catalase, glutathione S-transferase and superoxide dismutase were determined in bone. In both groups of treated animals lead treatment increased the production of malondialdehyde, while reducing activities of catalase, glutathione S-transferase and superoxide dismutase, indicating that it causes oxidative stress. Parallely with these effects lead significantly reduced the nucleic acid content and the activity of alkaline phosphatase, considered as biomarkers of osteoblast's function, conditions and development of bones. Moreover the concentrations of copper, zinc, iron and sodium were reduced in the excised bones. The present study indicates that the lead induced bone toxicity and its deteriorated development is the consequence of a primary oxidative stress. Our results may be helpful in understanding the modulation of biochemical parameters under lead toxicity

    Positive allosteric modulation of P2X7 promotes apoptotic cell death over lytic cell death responses in macrophages

    Get PDF
    P2X7 is an ATP-gated ion channel that is highly expressed by leukocytes, such as macrophages. Here, it has been demonstrated to be involved in the regulation of various cell death pathways; including apoptosis, pyroptosis, necrosis, and autophagy. However, cell death induction via P2X7 is complex and is reliant upon the nature of the stimulus, the duration of the stimulus, and the cell type investigated. Previous reports state that high extracellular ATP concentrations promote osmotic lysis, but whether positive allosteric modulation of P2X7 in the presence of lower concentrations of ATP condemns cells to the same fate is unknown. In this study, we compared cell death induced by high ATP concentrations, to cell death induced by compound K, a recently identified and potent positive allosteric modulator of P2X7. Based on our observations, we propose that high ATP concentrations induce early cell swelling, loss of mitochondrial membrane potential, plasma membrane rupture, and LDH release. Conversely, positive allosteric modulation of P2X7 primarily promotes an intrinsic apoptosis pathway. This was characterised by an increase in mitochondrial Ca2+, accelerated production of mitochondrial ROS, loss of mitochondrial membrane permeability in a Bax-dependent manner, the potential involvement of caspase-1, and caspase-3, and significantly accelerated kinetics of caspase-3 activation. This study highlights the ability of positive allosteric modulators to calibrate P2X7-dependent cell death pathways and may have important implications in modulating the antimicrobial immune response and in the resolution of inflammation

    Preferential Induction of Apoptosis in Regulatory T Cells by Tributyltin:

    No full text
    corecore