216 research outputs found

    Converse Sturm-Hurwitz-Kellogg theorem and related results

    Get PDF
    The classical Sturm-Hurwitz-Kellogg theorem asserts that a function, orthogonal to an n-dimensional Chebyshev system on a circle, has at least n+1 sign changes. We prove the converse: given an n-dimensional Chebyshev system on a circle and a function with at least n+1 sign changes, there exists an orientation preserving diffeomorphism of the circle that takes this function to a function, orthogonal to the Chebyshev system. We also prove that if a function on the real projective line has at least four sign changes then there exists an orientation preserving diffeomorphism of the projective line that takes this function to the Schwarzian derivative of some function. These results extend the converse four vertex theorem of H. Gluck and B. Dahlberg: a function on a circle with at least two local maxima and two local minima is the curvature of a closed plane curve

    Topological aspects of the Dvoretzky theorem

    Get PDF
    corecore