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Abstract. We prove that if V n is a Chebyshev system on the circle and f
is a continuous real-valued function with at least n + 1 sign changes then
there exists an orientation preserving diffeomorphism of S1 that takes f to a
function L2-orthogonal to V . We also prove that if f is a function on the real
projective line with at least four sign changes then there exists an orientation
preserving diffeomorphism of RP1 that takes f to the Schwarzian derivative
of a function on RP1. We show that the space of piecewise constant functions
on an interval with values ±1 and at most n + 1 intervals of constant sign is
homeomorphic to n-dimensional sphere.

Mathematics Subject Classification (2000). 53A04, 42A70.

Keywords. 4-vertex theorem, Sturm–Hurwitz–Kellogg theorem, Ghys theo-
rem, Chebyshev system, Schwarzian derivative.

1. Introduction and formulation of results

The classical four vertex theorem asserts that the curvature of a plane oval (strictly
convex smooth closed curve) has at least four extrema. Discovered about 100 years
ago by S. Mukhopadhyaya, this theorem and its numerous generalizations and
refinements continue to attract attention up to this day; see [7] for a sampler.

One such result is the converse four vertex theorem proved by Gluck for
strictly convex, and by Dahlberg for general curves [3, 1]: a periodic function
having at least two local minima and two local maxima is the curvature function
of a simple closed plane curve. See [2] for a very well written survey.

The radius of curvature ρ(α) of an oval, considered as a function of the
direction of the tangent line to the curve, is L2-orthogonal to the first harmonics:∫ 2π

0

ρ(α) cosαdα =
∫ 2π

0

ρ(α) sinαdα = 0.
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Such a function must have at least four critical points. The converse four vertex
theorem can be restated as follows: if a function ρ(α) has at least two local minima
and two local maxima then there is a diffeomorphism ϕ of the circle such that the
function ρ(ϕ(α)) is L2-orthogonal to the first harmonics.

Our first result is the following generalization.
A Chebyshev system is an n-dimensional1 space V of functions on the circle

S1 = R/2πZ such that every non-zero function from V has at most n − 1 zeros
(counted with multiplicities). According to the Sturm–Hurwitz–Kellogg theorem,
if a smooth function2 on S1 is L2-orthogonal to a Chebyshev system V n then this
function has at least n + 1 sign changes; see, e.g., [7]. In particular, a function
orthogonal to {1, cosα, sinα} has at least four zeros; applied to the derivative of
the radius of curvature of an oval, this implies the four vertex theorem.

We prove the converse Sturm–Hurwitz–Kellogg theorem.

Theorem 1. Let V n be a Chebyshev system on S1. If f is a continuous function
on S1 with at least n+ 1 sign changes then there exists an orientation preserving
diffeomorphism ϕ : S1 → S1 such that ϕ∗(f) := f ◦ ϕ is L2-orthogonal to V .

Our strategy of the proof is that of Gluck [3, 2] which we illustrate by the
following simplest case of the above theorem.

Example 1.1. Let f be a continuous function on S1 that has both positive and neg-
ative values. One claims that there exists an orientation preserving diffeomorphism
ϕ : S1 → S1 such that f ◦ ϕ has zero average value:∫ 2π

0

f(ϕ(x)) dx = 0.

Of course, this is obvious, but we shall describe an argument that exemplifies the
method of proof of Theorem 1 and other results of this paper.

Step 1. Let h be the step function that takes value 1 on [0, π) and −1 on [π, 2π).
This step function has zero average value.

Step 2. Since f changes sign, there is a number c 6= 0 such that f assumes both
values ±c. Scaling f , assume that c = 1 and that f(x1) = 1, f(x2) = −1. For every
ε > 0, there exists a diffeomorphism ϕ ∈ Diff+(S1) which stretches neighborhoods
of the points x1 and x2 so that ϕ∗(f) is ε-close in measure to h.

Step 3. For a sufficiently small real α, consider an orientation preserving diffeo-
morphism ψα ∈ Diff+(S1) that fixes 0 and stretches the interval [0, π] to [0, π+α].
We assume that the dependence of ψα on α is smooth. The correspondence α 7→ ψα
is a map of an interval I to the group Diff+(S1). Consider the function

F (α) =
∫ 2π

0

ψ∗α(h)(x) dx.

1Where n is odd. One can define a Chebyshev system on an interval as well, and then there is

no restriction on the parity of its dimension.
2Smoothness is not needed; one can work with finitely differentiable or continuous functions.
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One has F (0) = 0 and F ′(0) 6= 0. In particular, making the interval I smaller, if
needed, F has opposite signs at the end points of I.

Step 4. Finally, replace h in the definition of F by the function ϕ∗(f) from Step 2.
If ε is small enough, the resulting function F̄ : I → R still has opposite signs at
the end points of I, hence there exists ᾱ such that F̄ (ᾱ) = 0. Thus the function
ψ∗ᾱ(ϕ∗(f)) has zero average.

Remark 1.2. An object invariantly related to a function is its differential df =
f ′(x)dx (rather than the derivative). If λ is a differential 1-form on S1 and∫ 2π

0

λ = 0

then λ has sign changes, but the converse does not hold since∫ 2π

0

ϕ∗(λ) =
∫ 2π

0

λ

for every ϕ ∈ Diff+(S1). This explains why we deal with a function, rather than a
differential 1-form.

Another, rather recent, four-vertex-type theorem is due to E. Ghys: the
Schwarzian derivative of a diffeomorphism of the real projective line has at least
four zeros. Choose an affine coordinate x on RP1 and let f be a diffeomorphism.
Then the Schwarzian derivative S(f) is given by the formula

S(f) =
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2

;

it measures the failure of f to preserve the projective structure; see [7].
We prove a converse theorem.

Theorem 2. If f is a smooth function on RP1 with at least four sign changes then
there exists an orientation preserving diffeomorphism ϕ of the projective line and
g such that ϕ∗(f) = S(g).

Remark 1.3. The invariant meaning of the Schwarzian is not a function but rather
a quadratic differential (see, e.g., [7] for a detailed discussion):

S(f) =
(
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2)
dx2.

Similarly to Remark 1.2, the property of a quadratic differential on RP1 to be
the Schwarzian derivative of a diffeomorphism is invariant under the action of the
group Diff(RP1).

2. Proof of the converse Sturm–Hurwitz–Kellogg theorem

The proof consists of the same four steps as in Example 1.1.
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Step 1.

Lemma 2.1. There exists a piecewise constant function on S1 with values ±1 and
exactly n+ 1 intervals of constant sign which is L2-orthogonal to V .

Proof (suggested by D. Khavinson). Extend V n to a larger Chebyshev system
Wn+2 and pick f ∈ W − V . Consider g, the best L1 approximation of f by a
function in V . The function g exists since V is finite-dimensional.

Since W is a Chebyshev system, f − g has at most n+ 1 intervals of constant
sign (obviously, f−g 6= 0). Let Ik be these intervals, and let h be the function that
has alternating values ±1 on the intervals Ik. Since g is the best approximation of
f , one has the Lagrange multipliers condition:

d

dε

∣∣∣∣
ε=0

(∫ 2π

0

|(f − g)(x) + εv(x)| dx
)

= 0 (1)

for every v ∈ V . It follows from (1) that

0 =
∑
k

(−1)k
∫
Ik

v(x) dx =
∫ 2π

0

h(x)v(x) dx,

that is, h is orthogonal to V .
By the Sturm–Hurwitz–Kellogg theorem, h has at least n + 1 sign changes

(proof, for completeness: if not, one can find a function from V with the same
intervals of constant sign as h; such a function cannot be orthogonal to h). �

Step 2. Since f changes sign at least n + 1 times, there is a non-zero constant c
such that f takes the alternating values ±c at points, say, x0, . . . , xn. Multiplying
f by a constant, assume that c = 1.

Let h be the function from Lemma 2.1. For every ε > 0, there exists a diffeo-
morphism ϕ ∈ Diff+(S1) which stretches neighborhoods of the points x0, . . . , xn
so that the function ϕ∗(f) is ε-close in measure to h.

Step 3. Consider the function h and let [0, x1], [x1, x2], . . . , [xn, 2π] be its intervals
of constant sign. For α = (α1, . . . , αn), consider an orientation preserving diffeo-
morphism ψα ∈ Diff+(S1) that stretches the intervals [xi, xi+1] so that point xi
goes to xi + αi and which fixes 0. We assume that each |αi| is sufficiently small
and that the dependence of ψα on α is smooth. The correspondence α 7→ ψα is a
map of an n-dimensional disc Dn to Diff+(S1).

The formula F (α)(g) = 〈ψ∗α(h), g〉 defines a smooth map D → V ∗ that takes
the origin to the origin (the scalar product is understood in the L2 sense).

Lemma 2.2. The differential dF is non-degenerate at the origin.

Proof. Let g1, . . . , gn be a basis of V . We want to prove that the matrix

cij =
∂F (α)(gi)

∂αj

∣∣∣∣
α=0

, i, j = 1, . . . , n,
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is non-singular. One has

F (α)(g) =
n∑
k=0

(−1)k
∫ xk+1+αk+1

xk+αk

g(x) dx

where we assume that x0 = 0, xn+1 = 2π, α0 = αn+1 = 0. It follows that
cij = 2(−1)j+1gi(xj), and it suffices to show that the matrix gi(xj) is non-singular.
This is indeed a fundamental property of Chebyshev systems, see [6] (proof, for
completeness: if c = (c1, . . . , cn) is a non-zero vector such that

∑
cigi(xj) = 0 for

each j then the function
∑
cigi has n zeros, which contradicts the definition of

Chebyshev systems). �

Step 4. It follows from Lemma 2.2 that there exists δ > 0 such that the map
F , restricted to the cube Dn given by the conditions |αi| < δ, i = 1, . . . , n, has
degree one, and the hypersurface F (∂D) has rotation number one with respect to
the origin in V ∗.

Now replace h in the definition of the map F by the function ϕ∗(f) from
Step 2, and denote the new map by F̄ : Dn → V ∗. We shall be done if we show
that there exists α such that F̄ (α) = 0. Indeed, if ε is small enough then F̄ (∂D)
still has rotation number one with respect to the origin in V ∗, and therefore F̄ (D)
contains the origin. �

3. Digression: the space of step functions with values ±1 on an
interval

An extension of Lemma 2.1 to the case when V is not assumed to be a Chebyshev
system is the following Hobby–Rice theorem [4] (see also [10, 12]).

Theorem 3. Let V be an n-dimensional subspace in L1([0, 1]). Then there exists
a piecewise constant function on I with values ±1 and at most n + 1 intervals of
constant sign which is L2-orthogonal to V .

Proof ([4, 10]). Let x = (x0, x1, . . . , xn),
∑
i x

2
i = 1, be a point of the sphere Sn.

Assign to x the partition of [0, 1] into intervals of consecutive lengths x2
0, . . . , x

2
n

and the piecewise constant function hx with value equal to signxi on the respective
interval. We obtain a map F : Sn → V ∗ given by the formula

〈F (x), g〉 =
∫ 1

0

hx(t)g(t) dt.

This map is odd: F (−x) = −F (x), and it follows from the Borsuk–Ulam theorem
(see, e.g., [5]) that F (x) = 0 for some x ∈ Sn. Thus hx is orthogonal to V . �

From the point of view of topology, it is interesting to consider the space
Sn ⊂ L1([0, 1]) of piecewise constant functions on [0, 1] with values ±1 and at
most n+1 intervals of constant sign. We complement the proof of Theorem 3 with
the following result.
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Theorem 4. Sn is homeomorphic to n-dimensional sphere.

Proof. We give Sn the structure of a finite cell complex with two cells in every
dimension 0, 1, . . . , n and prove, by induction on n, that Sn is homeomorphic to
Sn. For n = 0, the set S0 consists of two constant functions with values +1 or −1
and is homeomorphic to S0.

Let ∆n = {x = (x0, . . . , xn) | xi ≥ 0,
∑
xi = 1} be the standard simplex.

Consider the subset C ⊂ Sn consisting of functions with exactly n + 1 intervals
of constant sign. The lengths of these intervals are positive numbers x0, x1, . . . , xn
satisfying

∑
xi = 1, and a function from C is determined by x = (x0, . . . , xn)

and the sign ± that the function has on the first interval. Thus we obtain two
embeddings ψn± : Int ∆n → C, and C is the disjoint union of the images of ψn+
and ψn−.

The maps ψn± extend continuously to the boundary ∂∆n: when some xis
shrink to zero, the respective intervals of constant sign of a function disappear, and
if the function has the same signs in neighboring segments, they merge together.
For example, let n = 2. Then ψ2

+(0, x1, x2) has two intervals of constant sign and
equals ψ1

−(x1, x2), whereas ψ2
+(x0, 0, x2) is the constant function with value +1,

i.e., equals ψ0
+(1).

We have Sn − C = Sn−1, and the latter is homeomorphic to Sn−1 by the
induction assumption. Each map ψn± sends ∂∆n to Sn−1, and we claim that the
degree of ψn± is one. Indeed, the faces of ∂∆n are given by one of the conditions:
x0 = 0, x1 = 0, . . . , xn = 0. Since ψn±(0, x1, . . . , xn) = ψn−1

∓ (x1, . . . , xn) and
ψn±(x0, . . . , xn−1, 0) = ψn−1

± (x0, . . . , xn−1), the map ψn± sends the faces x0 = 0
and xn = 0 to the two n− 1-dimensional cells of Sn−1, and the other faces to the
n− 2-skeleton of Sn−1. Therefore degψn± = 1.

Since the attaching maps of two n-dimensional discs ∆n to Sn−1 have degree
one, Sn is n-dimensional sphere. �

One can also consider the space of piecewise constant functions on the circle
with values ±1 and at most n intervals of constant sign (n even). Such a space
is also homeomorphic to Sn: cut the circle at, say, point 0 to obtain a piecewise
constant function on an interval with at most n+ 1 intervals of constant sign, and
apply Theorem 4.

4. Proof of the converse Ghys theorem

Let us start with a reformulation described in [8].
A diffeomorphism f : RP1 → RP1 has a unique lifting to a homogeneous

(of degree one) area preserving diffeomorphism F of the punctured plane. If f is
a projective transformation then F ∈ SL(2,R). Let x be the angular parameter
on RP1 so that x and x + π describe the same point. Then (x, r) are the polar
coordinates in the plane and

F (x, r) = (f(x), rf ′−1/2(x)).
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Let γ be the image of the unit circle under F ; this is a centrally symmetric curve
that bounds area π. The curve γ satisfies the differential equation

γ′′(x) = −k(x)γ(x) (2)

where k is a π-periodic function called the potential. The relation of the potential
with the Schwarzian derivative is as follows:

k =
1
2
S(f) + 1.

In particular, the zeros of the Schwarzian corresponds to the values 1 of the func-
tion k (indeed, if k(x) ≡ 1 then γ is a central ellipse, F ∈ SL(2,R) and f is a
projective transformation).

Thus we arrive at the following reformulation of Theorem 2: if a function
k − 1 on RP1 changes sign at least four times then there exists an orientation
preserving diffeomorphism ϕ of the projective line such that the function k̄ = ϕ∗(k)
is the potential of a centrally symmetric closed parametric curve γ in the punctured
plane bounding area π, that is, a curve satisfying the differential equation γ′′(x) =
−k̄(x)γ(x).

The proof consists of the same four steps as in Example 1.1.

Step 1. Let k1, k2 be two positive numbers satisfying k1 > 1, k1 + k2 = 2 and
both sufficiently close to 1. We claim that there exists a π-periodic step function
h(x) with four intervals of constant values k1, k2, k1, k2 on [0, π] such that the
corresponding solution of the differential equation (2) is a closed curve.

To prove this, consider the frame F (x) = (γ(x), γ′(x)). The differential equa-
tion (2) rewrites as

F ′(x) = F (x)A(x) (3)
where

A(x) =
(

0 −k(x)
1 0

)
.

Equation (3) defines a curve on the group SL(2,R); the curve γ is centrally symmet-
ric and closed iff F (π) = −F (0). Let us refer to the last equality as the monodromy
condition.

Let the desired step function h have intervals of constant values of lengths
t1, t2, t3, t4 with t1 + t2 + t3 + t4 = π. For a constant potential k, equation (3) is
easily solved:

F (x) = F (0)exA = F (0)

(
cos(
√
k x) −

√
k sin(

√
k x)

1√
k

sin(
√
k x) cos(

√
k x)

)
.

It follows that the monodromy condition is

et1Aet2Bet3Aet4B = −E (4)

where

A =
(

0 −k1

1 0

)
, B =

(
0 −k2

1 0

)
and E is the unit matrix.
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Let us look for a solution satisfying t3 = t1, t4 = t2; then t1 + t2 = π/2. Set
α = t1

√
k1, β = t2

√
k2. A direct computation shows that (4) is satisfied once

tanα tanβ =
√
k1k2. (5)

The constraint on α and β is

α√
k1

+
β√
k2

=
π

2
.

If α is close to π/2 then the left hand side of (5) is greater, and if α is close to 0
then it is smaller than the right hand side. It follows that (5) has a solution.

Step 2. Since k(x) − 1 changes sign at least four times, there is a constant c > 0
such that k takes the values 1+ c, 1− c, 1+ c, 1− c at points, say, x1, x2, x3, x4. Let
k1 = 1 + c, k2 = 1− c, and let h be the step function from Step 1. For every ε > 0,
there exists a diffeomorphism ϕ ∈ Diff+(RP1) which stretches neighborhoods of
the points x1, . . . , x4 so that the function ϕ∗(k) is ε-close in measure to h.

Step 3. Similarly to Step 3 in Section 2, consider a 3-parameter family of diffeo-
morphisms ψα ∈ Diff(RP1) that change the intervals of constant values of the step
function h. Given α, consider the function ψ∗α(h) as the potential of equation (3)
with the initial condition F (0) = E. The formula G(α) = F (π) defines a smooth
map D3 → SL(2,R) that takes the origin to the matrix −E.

Lemma 4.1. The differential dG is non-degenerate at the origin.

Proof. Stretch the intervals of constant values of the potential function to ti +
εsi, i = 1, 2, 3, 4; the vector s = (s1, s2, s3, s4), s1 +s2 +s3 +s4 = 0, is interpreted
as a tangent vector to D3 at the origin. Using the formula for monodromy (4), we
compute

−dG(s) = s1A+ s4B + s2e
t1ABe−t1A + s3e

t2BAet2B (6)

where A,B, t1, t2 are as in Step 1. We need to check that the linear map dG : R4 →
sl2, given by (6), is surjective and that its kernel is transverse to the hyperplane
s1 +s2 +s3 +s4 = 0. Both claims follow, by a direct computation, from the explicit
formulas for the matrices A,B and their exponents given in Step 1. �

Step 4. This last step is identical to Step 4 in Section 2: replace the potential h
in the definition of the map G in Step 3 by ϕ∗(k). We obtain a new monodromy
map Ḡ : D3 → SL(2,R) whose image contains the matrix −E. The corresponding
curve closes up, and we are done.

Remark 4.2. The Ghys theorem is closely related to the four vertex theorem in
the hyperbolic plane [11]. Let γ be an oval in H2. Each tangent line to γ intersects
the circle at infinity in two points, and this defines a circle diffeomorphism fγ . In
the projective model of hyperbolic geometry, the circle at infinity is represented
by a conic in RP2. A conic has a canonical projective structure, hence fγ can
be viewed as a diffeomorphism of RP1. Singer’s theorem asserts that the zeros of
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the Schwarzian S(fγ) correspond to the vertices of γ (in the hyperbolic metric, of
course); see [7] for a discussion.

Note, however, that a converse four vertex theorem for the hyperbolic plane
does not hold in the same way as in the Euclidean plane: if the positive curvature
function is too small then the relevant curve in the hyperbolic plane does not
close up.

5. Problems and conjectures

There are many other results extending the four vertex theorem. In each case, it
is interesting to find the converse theorem; we mention but a few.

Problem 1. Another classical theorem of Mukhopadhyaya is that a plane oval has
at least six affine vertices (also known as sextactic points). An affine vertex is a
point at which the curve is abnormally well approximated by a conic: at a generic
point, a conic passes through five infinitesimally close points of the curve, whereas
at an affine point, this number equals six. Every oval γ can be given an affine pa-
rameterization such that det(γ′(x), γ′′(x)) is constant. Then γ′′′(x) = −k(x)γ′(x)
where the function k(x) is called the affine curvature. The affine vertices are the
critical points of the affine curvature; see, e.g., [7].

A conjectural converse theorem asserts that if a periodic function k has at
least six extrema then there exists a plane oval γ whose affine curvature at point
γ(x) is k(x) (of course, here x is not necessarily an affine parameter).

Problem 2. The four vertex theorem has numerous discrete versions; see, e.g., [7, 9]
for surveys and references. For example, let P be a convex n-gon with vertices
x1, . . . , xn. Assume that n ≥ 4 and that no four consecutive vertices lie on a circle.
Consider the circles circumscribing triples of consecutive vertices xi−1xixi+1, and
assume that the center of this circle lies inside the cone of vertex xi (such a polygon
is called coherent). Let r1, . . . , rn be the cyclic sequence of the radii of the circles.
Then the sequence r1, . . . , rn has at least two local maxima and two local minima.

A conjectural converse theorem asserts that if a cyclic sequence r1, . . . , rn has
at least two local maxima and two local minima then it corresponds, as described
above, to a coherent convex polygon.

Another version of discrete four vertex theorem concerns the circles tangent
to the triples of consecutive sides of a polygon: the radii of such inscribed circles
also form a cyclic sequence with at least two local maxima and two local minima.
One conjectures that a converse theorem holds as well.
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