33,882 research outputs found

    Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies

    Get PDF
    Experimental techniques are developed to determine the applicability of a particular luminescing center for use in a luminescent solar concentrator (LSC). The relevant steady-state characteristics of eighteen common organic laser dyes are given. The relative spectral homogeneity of such dyes are shown to depend upon the surrounding material using narrowband laser excitation. We developed three independent techniques for measuring self-absorption rates; these are time-resolved emission, steady-state polarization anisotropy, and spectral convolution. Preliminary dye degradation and prototype efficiency measurements are included. Finally, we give simple relationships relating the efficiency and gain of an LSC to key spectroscopic parameters of its constituents

    A webometric analysis of Australian Universities using staff and size dependent web impact factors (WIF)

    Get PDF
    This study describes how search engines (SE) can be employed for automated, efficient data gathering for Webometric studies using predictable URLs. It then compares the usage of staffrelated Web Impact Factors (WIFs) to sizerelated impact factors for a ranking of Australian universities, showing that rankings based on staffrelated WIFs correlate much better with an established ranking from the Melbourne Institute than commonly used sizedependent WIFs. In fact sizedependent WIFs do not correlate with the Melbourne ranking at all. It also compares WIF data for Australian Universities provided by Smith (1999) for a longitudinal comparison of the WIF of Australian Universities over the last decade. It shows that sizedependent WIF values declined for most Australian universities over the last ten years, while staffdependent WIFs rose

    Parity effect and single-electron injection for Josephson-junction chains deep in the insulating state

    Full text link
    We have made a systematic investigation of charge transport in 1D chains of Josephson junctions where the characteristic Josephson energy is much less than the single-island Cooper-pair charging energy, EJECPE_\mathrm{J}\ll E_{CP}. Such chains are deep in the insulating state, where superconducting phase coherence across the chain is absent, and a voltage threshold for conduction is observed at the lowest temperatures. We find that Cooper-pair tunneling in such chains is completely suppressed. Instead, charge transport is dominated by tunneling of single electrons, which is very sensitive to the presence of BCS quasiparticles on the superconducting islands of the chain. Consequently we observe a strong parity effect, where the threshold voltage vanishes sharply at a characteristic parity temperature TT^*, which is significantly lower than the the critical temperature, TcT_c. A measurable and thermally-activated zero-bias conductance appears above TT^*, with an activation energy equal to the superconducting gap, confirming the role of thermally-excited quasiparticles. Conduction below TT^* and above the voltage threshold occurs via injection of single electrons/holes into the Cooper-pair insulator, forming a non-equilibrium steady state with a significantly enhanced effective temperature. Our results explicitly show that single-electron transport dominates deep in the insulating state of Josephson-junction arrays. This conduction process has mostly been ignored in previous studies of both superconducting junction arrays and granular superconducting films below the superconductor-insulator quantum phase transition.Comment: 8 pages, 6 figure

    The Effects of Age on Red Giant Metallicities Derived from the Near-Infrared Ca II Triplet

    Get PDF
    We have obtained spectra with resolution 2.5 Angstroms in the region 7500-9500 Angstroms for 116 red giants in 5 Galactic globular clusters and 6 old open clusters (5 with published metallicities, and one previously unmeasured). The signal-to-noise ranges from 20 to 85. We measure the equivalent widths of the infrared Ca II triplet absorption lines in each stars and compare to cluster metallicities taken from the literature. With globular cluster abundances on the Carretta & Gratton scale, and open cluster abundances taken from the compilation of Friel and collaborators, we find a linear relation between [Fe/H] and Ca II line strength spanning the range -2 < [Fe/H] < -0.2 and ages from 2.5 - 13 Gyr. No evidence for an age effect on the metallicity calibration is observed. Using this calibration, we find the metallicity of the old open cluster Trumpler 5 to be [Fe/H] = -0.56 +/-0.11. Considering the 10 clusters of known metallicity shifted to a common distance and reddening, we find that the additional metallicity error introduced by the variation of horizontal branch/red clump magnitude with metallicity and age is of order +/-0.05 dex, which can be neglected in comparison to the intrinsic scatter in our method. The results are discussed in the context of abundance determinations for red giants in Local Group galaxies.Comment: Accepted by MNRAS; 21 pages in LaTeX MNRAS style, 6 tables, 6 figure

    Self-similar collapse and the structure of dark matter halos: A fluid approach

    Full text link
    We explore the dynamical restrictions on the structure of dark matter halos through a study of cosmological self-similar gravitational collapse solutions. A fluid approach to the collisionless dynamics of dark matter is developed and the resulting closed set of moment equations are solved numerically including the effect of halo velocity dispersions (both radial and tangential), for a range of spherically averaged initial density profiles. Our results highlight the importance of tangential velocity dispersions to obtain density profiles shallower than 1/r21/r^2 in the core regions, and for retaining a memory of the initial density profile, in self-similar collapse. For an isotropic core velocity dispersion only a partial memory of the initial density profile is retained. If tangential velocity dispersions in the core are constrained to be less than the radial dispersion, a cuspy core density profile shallower than 1/r1/r cannot obtain, in self-similar collapse.Comment: 25 pages, 7 figures, submitted to Ap

    Baryon Acoustic Oscillations in 2D: Modeling Redshift-space Power Spectrum from Perturbation Theory

    Get PDF
    We present an improved prescription for matter power spectrum in redshift space taking a proper account of both the non-linear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the non-linear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1~2%, and the growth rate parameter by ~5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription of redshift-space power spectrum including the non-linear corrections can be used as an accurate theoretical template for anisotropic BAOs.Comment: 18 pages, 10 figure

    Multi-shocks in asymmetric simple exclusions processes: Insights from fixed-point analysis of the boundary-layers

    Full text link
    The boundary-induced phase transitions in an asymmetric simple exclusion process with inter-particle repulsion and bulk non-conservation are analyzed through the fixed points of the boundary layers. This system is known to have phases in which particle density profiles have different kinds of shocks. We show how this boundary-layer fixed-point method allows us to gain physical insights on the nature of the phases and also to obtain several quantitative results on the density profiles especially on the nature of the boundary-layers and shocks.Comment: 12 pages, 8 figure
    corecore