7,906 research outputs found

    Power-law corrections to black-hole entropy via entanglement

    Full text link
    We consider the entanglement between quantum field degrees of freedom inside and outside the horizon as a plausible source of black-hole entropy. We examine possible deviations of black hole entropy from area proportionality. We show that while the area law holds when the field is in its ground state, a correction term proportional to a fractional power of area results when the field is in a superposition of ground and excited states. We compare our results with the other approaches in the literature.Comment: 10 pages, 5 figures, to appear in the Proceedings of "BH2, Dynamics and Thermodynamics of Blackholes and Naked Singularities", May 10-12 2007, Milano, Italy; conference website: http://www.mate.polimi.it/bh2

    Gravitational Redshift in Einstein-Kalb-Ramond Spacetime and Randall-Sundrum Scenario

    Full text link
    It is shown that the gravitational redshift as predicted by Einstein's theory, is modified in presence of second rank antisymmetric tensor (Kalb-Ramond) field in a string inspired background spacetime.In presence of extra dimensions, the Randall-Sundrum brane world scenario is found to play a crucial role in suppressing this additional shift. The bound on the value of the warp factor is determined from the redshift data and is found to be in good agreement with that determined from the requirements of Standard model.Comment: 4 Pages, Revtex, No figures, version thoroughly revise

    Where are the degrees of freedom responsible for black hole entropy?

    Full text link
    Considering the entanglement between quantum field degrees of freedom inside and outside the horizon as a plausible source of black hole entropy, we address the question: {\it where are the degrees of freedom that give rise to this entropy located?} When the field is in ground state, the black hole area law is obeyed and the degrees of freedom near the horizon contribute most to the entropy. However, for excited state, or a superposition of ground state and excited state, power-law corrections to the area law are obtained, and more significant contributions from the degrees of freedom far from the horizon are shown.Comment: 6 pages, 4 figures, Invited talk at Theory Canada III, Edmonton, Alberta, Canada, June 16, 200

    Where are the black hole entropy degrees of freedom ?

    Get PDF
    Understanding the area-proportionality of black hole entropy (the `Area Law') from an underlying fundamental theory has been one of the goals of all models of quantum gravity. A key question that one asks is: where are the degrees of freedom giving rise to black hole entropy located? Taking the point of view that entanglement between field degrees of freedom inside and outside the horizon can be a source of this entropy, we show that when the field is in its ground state, the degrees of freedom near the horizon contribute most to the entropy, and the area law is obeyed. However, when it is in an excited state, degrees of freedom far from the horizon contribute more significantly, and deviations from the area law are observed. In other words, we demonstrate that horizon degrees of freedom are responsible for the area law.Comment: 5 pages, 3 eps figures, uses Revtex4, References added, Minor changes to match published versio

    Cosmic optical activity from an inhomogeneous Kalb-Ramond field

    Get PDF
    The effects of introducing a harmonic spatial inhomogeneity into the Kalb-Ramond field, interacting with the Maxwell field according to a `string-inspired' proposal made in earlier work are investigated. We examine in particular the effects on the polarization of synchrotron radiation from cosmologically distant (i.e. of redshift greater than 2) galaxies, as well as the relation between the electric and magnetic components of the radiation field. The rotation of the polarization plane of linearly polarized radiation is seen to acquire an additional contribution proportional to the square of the frequency of the dual Kalb-Ramond axion wave, assuming that it is far smaller compared to the frequency of the radiation field.Comment: 9 pages, Revtex, no figure
    corecore