34 research outputs found

    Plasma neutrophil gelatinase associated lipocalin (NGAL) is associated with kidney function in uraemic patients before and after kidney transplantation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neutrophil gelatinase associated lipocalin (NGAL) is a biomarker of kidney injury. We examined plasma levels of NGAL in a cohort of 57 kidney allograft recipients (Tx group, 39 ± 13 years), a uraemic group of 40 patients remaining on the waiting list (47 ± 11 years) and a control group of 14 healthy subjects matched for age, sex and body mass index (BMI). The kidney graft recipients were studied at baseline before transplantation and 3 and 12 months after transplantation and the uraemic group at baseline and after 12 months.</p> <p>Methods</p> <p>NGAL was measured using a validated in-house Time-Resolved Immuno-flourometric assay (TRIFMA). Repeated measurements differed by < 10% and mean values were used for statistical analyses. Spearman rank order correlation analysis and the Kruskal-Wallis non-parametric test were used to evaluate the association of NGAL concentrations with clinical parameters.</p> <p>Results</p> <p>Plasma NGAL levels before transplantation in the Tx and uraemic groups were significantly higher than in the healthy controls (1,251 μg/L, 1,478 μg/L vs. 163 μg/L, p < 0.0001). In the Tx group NGAL concentrations were associated with serum creatinine (R = 0.51, p < 0.0001), duration of end-stage renal failure (R = 0.41, p = 0.002) and leukocyte count (R = 0.29, p < 0.026). At 3 and 12 months plasma NGAL concentrations declined to 223 μg/L and 243 μg/L, respectively and were associated with homocysteine (R = 0.39, p = 0.0051 and R = 0.47, p = 0.0007).</p> <p>Conclusions</p> <p>Plasma NGAL is a novel marker of kidney function, which correlates to duration of end-stage renal failure (ESRD) and serum creatinine in uraemic patients awaiting kidney transplantation. Plasma NGAL is associated with homocysteine in transplanted patients. The prognostic value of these findings requires further studies.</p

    Microarray analysis of newly synthesized RNA in cells and animals

    No full text
    Current methods to analyze gene expression measure steady-state levels of mRNA. To specifically analyze mRNA transcription, we have developed a technique that can be applied in vivo in intact cells and animals. Our method makes use of the cellular pyrimidine salvage pathway and is based on affinity-chromatographic isolation of thiolated mRNA. When combined with data on mRNA steady-state levels, this method is able to assess the relative contributions of mRNA synthesis and degradation/stabilization. It overcomes limitations associated with currently available methods such as mechanistic intervention that disrupts cellular physiology, or the inability to apply the techniques in vivo. Our method was first tested in serum response of cultured fibroblast cells and then applied to the study of renal ischemia reperfusion injury, demonstrating its applicability for whole organs in vivo. Combined with data on mRNA steady-state levels, this method provided a detailed analysis of regulatory mechanisms of mRNA expression and the relative contributions of RNA synthesis and turnover within distinct pathways, and identification of genes expressed at low abundance at the transcriptional level
    corecore