150 research outputs found

    Epigenetic Mechanisms in Developmental Alcohol-Induced Neurobehavioral Deficits

    Get PDF
    Alcohol consumption during pregnancy and its damaging consequences on the developing infant brain are significant public health, social, and economic issues. The major distinctive features of prenatal alcohol exposure in humans are cognitive and behavioral dysfunction due to damage to the central nervous system (CNS), which results in a continuum of disarray that is collectively called fetal alcohol spectrum disorder (FASD). Many rodent models have been developed to understand the mechanisms of and to reproduce the human FASD phenotypes. These animal FASD studies have provided several molecular pathways that are likely responsible for the neurobehavioral abnormalities that are associated with prenatal alcohol exposure of the developing CNS. Recently, many laboratories have identified several immediate, as well as long-lasting, epigenetic modifications of DNA methylation, DNA-associated histone proteins and microRNA (miRNA) biogenesis by using a variety of epigenetic approaches in rodent FASD models. Because DNA methylation patterns, DNA-associated histone protein modifications and miRNA-regulated gene expression are crucial for synaptic plasticity and learning and memory, they can therefore offer an answer to many of the neurobehavioral abnormalities that are found in FASD. In this review, we briefly discuss the current literature of DNA methylation, DNA-associated histone proteins modification and miRNA and review recent developments concerning epigenetic changes in FASD

    CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice

    Get PDF
    Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD

    Management of diseases and insect-pests of French bean in Northwestern Indian Himalayan region using integrated approaches

    Get PDF
    French bean (Phaseolus vulgaris L.) production is adversely affected by many pathogens and insect-pests worldwide. In the present investigation, effect of different bio-fortified composts, organic amendments, botanicals and pesticides were evaluated against diseases and insect- pests of french bean. The results showed that seed treatment and drenching with Trichoderma harzianum strain 11, followed by soil application of fortified farmyard manure resulted in the lowest root rot incidence, highest germination, vigour and yield in french bean. In another set of experiment, soil incorporation of Parthenium hysterophorus, Urtica dioicaandLantana camarawere found to reduce root rot incidence with high germination and pod yield. Among the bioproducts and botanicals tested, foliar spray of cow dung extract (50%) reduced angular leaf spot, rust and bacterial blight severity by 51, 69 and 25 per cent, respectively. Among the fungicides, foliar application of azoxystrobin 23 SC (0.1%) and difenoconazole 25EC (0.025%), also reduced angular leaf spot and rust severity by 93 and 90 per cent, respectively. Among different insect pest management strategies under field conditions, cartap hydrochloride and batain seed extract registered low sucking bug (Chauliops choprai) population. Integrated approaches including bio-agents, botanicals along with chemicals for managing these diseases and insect-pests were found appropriate options. Out of six different IPM modules evaluated, seed treatment with carbendazim along with foliar spray of 0.1% azoxystrobin and cartap hydrochloride resulted in lowest root rot, rust, angular leaf spot, bacterial blight and Chaulopsis choprai bug population in French bean

    Organic Additive-Mediated Synthesis of Novel Cobalt(II) Hydroxides

    Get PDF
    Electrochemical precipitation of cobalt(II) hydroxide from nitrate solutions containing organic molecules, such as glucose, fructose, lactose, glycerol, and citric acid, yields a new modification of cobalt(II) hydroxide (a = 3.09 ± 0.03 à , c = 23.34 ± 0.36 à ) that is isostructural with α-nickel hydroxide; precipitation in the absence of organic additives gives the stable, brucite-like, βCo(OH)2. © 1995 Academic Press. All rights reserved

    The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Get PDF
    Background: India has 2.0 million estimated tuberculosis (TB) cases per annum with an estimated 280,000 TBrelated deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i) treatment outcomes including the number who died while on treatment, ii) the month of death and iii) characteristics associated with “early” death, occurring in the initial 8 weeks of treatment. Methods: This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs) in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children) registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results: There were 8,240 TB patients (5183 males) of whom 492 (6%) were known to have died during treatment. Case-fatality was higher in those previously treated (12%) and lower in those with extra-pulmonary TB (2%). There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with “early death”. Conclusion: In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i) the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii) co-morbidities, such as HIV/ AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed

    Simultaneous storage of medical images in the spatial and frequency domain: A comparative study

    Get PDF
    BACKGROUND: Digital watermarking is a technique of hiding specific identification data for copyright authentication. This technique is adapted here for interleaving patient information with medical images, to reduce storage and transmission overheads. METHODS: The patient information is encrypted before interleaving with images to ensure greater security. The bio-signals are compressed and subsequently interleaved with the image. This interleaving is carried out in the spatial domain and Frequency domain. The performance of interleaving in the spatial, Discrete Fourier Transform (DFT), Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) coefficients is studied. Differential pulse code modulation (DPCM) is employed for data compression as well as encryption and results are tabulated for a specific example. RESULTS: It can be seen from results, the process does not affect the picture quality. This is attributed to the fact that the change in LSB of a pixel changes its brightness by 1 part in 256. Spatial and DFT domain interleaving gave very less %NRMSE as compared to DCT and DWT domain. CONCLUSION: The Results show that spatial domain the interleaving, the %NRMSE was less than 0.25% for 8-bit encoded pixel intensity. Among the frequency domain interleaving methods, DFT was found to be very efficient

    Superior Neuroprotective Efficacy of LAU-0901, a Novel Platelet-Activating Factor Antagonist, in Experimental Stroke

    Get PDF
    Platelet-activating factor (PAF) accumulates during cerebral ischemia, and inhibition of this process plays a critical role in neuronal survival. Recently, we demonstrated that LAU-0901, a novel PAF receptor antagonist, is neuroprotective in experimental stroke. We used magnetic resonance imaging in conjunction with behavior and immunohistopathology to expand our understanding of this novel therapeutic approach. Sprague–Dawley rats received 2 h middle cerebral artery occlusion (MCAo) and were treated with LAU-0901 (60 mg/kg) or vehicle 2 h from MCAo onset. Behavioral function, T2-weighted imaging (T2WI), and apparent diffusion coefficients were performed on days 1, 3, and 7 after MCAo. Infarct volume and number of GFAP, ED-1, and NeuN-positive cells were conducted on day 7. Behavioral deficit was significantly improved by LAU-0901 treatment compared to vehicle on days 1, 3, and 7. Total lesion volumes computed from T2WI were significantly reduced by LAU-0901 on days 1, 3, and 7 (by 83%, 90%, and 96%, respectively), which was consistent with decreased edema formation. Histopathology revealed that LAU-0901 treatment resulted in significant reduction of cortical and subcortical infarct volumes, attenuated microglial infiltration, and promoted astrocytic and neuronal survival. These findings suggest LAU-0901 is a promising neuroprotectant and provide the basis for future therapeutics in patients suffering ischemic stroke
    corecore