1,216 research outputs found

    Sensitivity of Next-Generation Tritium Beta-Decay Experiments for keV-Scale Sterile Neutrinos

    Full text link
    We investigate the sensitivity of tritium β\beta-decay experiments for keV-scale sterile neutrinos. Relic sterile neutrinos in the keV mass range can contribute both to the cold and warm dark matter content of the universe. This work shows that a large-scale tritium beta-decay experiment, similar to the KATRIN experiment that is under construction, can reach a statistical sensitivity of the active-sterile neutrino mixing of sin2θ108\sin^2\theta \sim 10^{-8}. The effect of uncertainties in the known theoretical corrections to the tritium β\beta-decay spectrum were investigated, and found not to affect the sensitivity significantly. It is demonstrated that controlling uncorrelated systematic effects will be one of the main challenges in such an experiment.Comment: 24 pages, 16 figure

    Dead layer on silicon p-i-n diode charged-particle detectors

    Full text link
    Semiconductor detectors in general have a dead layer at their surfaces that is either a result of natural or induced passivation, or is formed during the process of making a contact. Charged particles passing through this region produce ionization that is incompletely collected and recorded, which leads to departures from the ideal in both energy deposition and resolution. The silicon \textit{p-i-n} diode used in the KATRIN neutrino-mass experiment has such a dead layer. We have constructed a detailed Monte Carlo model for the passage of electrons from vacuum into a silicon detector, and compared the measured energy spectra to the predicted ones for a range of energies from 12 to 20 keV. The comparison provides experimental evidence that a substantial fraction of the ionization produced in the "dead" layer evidently escapes by diffusion, with 46% being collected in the depletion zone and the balance being neutralized at the contact or by bulk recombination. The most elementary model of a thinner dead layer from which no charge is collected is strongly disfavored.Comment: Manuscript submitted to NIM

    Commissioning of the vacuum system of the KATRIN Main Spectrometer

    Get PDF
    The KATRIN experiment will probe the neutrino mass by measuring the beta-electron energy spectrum near the endpoint of tritium beta-decay. An integral energy analysis will be performed by an electro-static spectrometer (Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a volume of 1240 m^3, and a complex inner electrode system with about 120000 individual parts. The strong magnetic field that guides the beta-electrons is provided by super-conducting solenoids at both ends of the spectrometer. Its influence on turbo-molecular pumps and vacuum gauges had to be considered. A system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter strips has been deployed and was tested during the commissioning of the spectrometer. In this paper the configuration, the commissioning with bake-out at 300{\deg}C, and the performance of this system are presented in detail. The vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is demonstrated that the performance of the system is already close to these stringent functional requirements for the KATRIN experiment, which will start at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure

    The KATRIN Pre-Spectrometer at reduced Filter Energy

    Get PDF
    The KArlsruhe TRItium Neutrino experiment, KATRIN, will determine the mass of the electron neutrino with a sensitivity of 0.2 eV (90% C.L.) via a measurement of the beta-spectrum of gaseous tritium near its endpoint of E_0 =18.57 keV. An ultra-low background of about b = 10 mHz is among the requirements to reach this sensitivity. In the KATRIN main beam-line two spectrometers of MAC-E filter type are used in a tandem configuration. This setup, however, produces a Penning trap which could lead to increased background. We have performed test measurements showing that the filter energy of the pre-spectrometer can be reduced by several keV in order to diminish this trap. These measurements were analyzed with the help of a complex computer simulation, modeling multiple electron reflections both from the detector and the photoelectric electron source used in our test setup.Comment: 22 pages, 12 figure

    A Bisognano-Wichmann-like Theorem in a Certain Case of a Non Bifurcate Event Horizon related to an Extreme Reissner-Nordstr\"om Black Hole

    Full text link
    Thermal Wightman functions of a massless scalar field are studied within the framework of a ``near horizon'' static background model of an extremal R-N black hole. This model is built up by using global Carter-like coordinates over an infinite set of Bertotti-Robinson submanifolds glued together. The analytical extendibility beyond the horizon is imposed as constraints on (thermal) Wightman's functions defined on a Bertotti-Robinson sub manifold. It turns out that only the Bertotti-Robinson vacuum state, i.e. T=0T=0, satisfies the above requirement. Furthermore the extension of this state onto the whole manifold is proved to coincide exactly with the vacuum state in the global Carter-like coordinates. Hence a theorem similar to Bisognano-Wichmann theorem for the Minkowski space-time in terms of Wightman functions holds with vanishing ``Unruh-Rindler temperature''. Furtermore, the Carter-like vacuum restricted to a Bertotti-Robinson region, resulting a pure state there, has vanishing entropy despite of the presence of event horizons. Some comments on the real extreme R-N black hole are given

    Statistical Analysis of Different Muon-antineutrino->Electron-antineutrino Searches

    Full text link
    A combined statistical analysis of the experimental results of the LSND and KARMEN \numubnueb oscillation search is presented. LSND has evidence for neutrino oscillations that is not confirmed by the KARMEN experiment. This joint analysis is based on the final likelihood results for both data sets. A frequentist approach is applied to deduce confidence regions. At a combined confidence level of 36%, there is no area of oscillation parameters compatible with both experiments. For the complementary confidence of 1-0.36=64%, there are two well defined regions of oscillation parameters (sin^2(2th),Dm^2) compatible with both experiments.Comment: 25 pages, including 10 figures, submitted to Phys. Rev.
    corecore