726 research outputs found
Recommended from our members
Toward improved hydrologic prediction with reduced uncertainty using sequential multi-model combination
The contemporary usage of hydrologic models has been to rely on a single model to perform the simulation and predictions. Despite the tremendous progress, efforts and investment put into developing more hydrologic models, there is no convincing claim that any particular model in existence is superior to other models for various applications and under all circumstances. This results to reducing the size of the plausible model space and often leads to predictions that may well-represent some phenomena or events at the expenses of others. Assessment of predictive uncertainty based on a single model is subject to statistical bias and most likely underestimation of uncertainty. This endorses the implementation of multi-model methods for more accurate estimation of uncertainty in hydrologic prediction. In this study, we present two methods for the combination of multiple model predictors using Bayesian Model Averaging (BMA) and Sequential Bayesian Model Combination (SBMC). Both methods are statistical schemes to infer a combined probabilistic prediction that possess more reliability and skill than the original model members produced by several competing models. This paper discusses the features of both methods and explains how the limitation of BMA can be overcome by SBMC. Three hydrologic models are considered and it is shown that multi-model combination can result in higher prediction accuracy than individual models. © 2008 ASCE
Recommended from our members
Model performance of downscaling 1999-2004 hydrometeorological fields to the upper Rio Grande basin using different forcing datasets
This study downscaled more than five years of data (1999-2004) for hydrometeorological fields over the upper Rio Grande basin (URGB) to a 4-km resolution using a regional model [fifth-generation Pennsylvania State University-National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5, version 3)] and two forcing datasets that include National Centers for Environmental Prediction (NCEP)-NCAR reanalysis-1 (R1) and North America Regional Reanalysis (NARR) data. The long-term high-resolution simulation results show detailed patterns of hydroclimatological fields that are highly related to the characteristics of the regional terrain; the most important of these patterns are precipitation localization features caused by the complex topography. In comparison with station observational data, the downscaling processing, on whichever forcing field is used, generated more accurate surface temperature and humidity fields than the Eta Model and NARR data, although it still included marked errors, such as a negative (positive) bias toward the daily maximum (minimum) temperature and overestimated precipitation, especially in the cold season. Comparing the downscaling results forced by the NARR and R1 with both the gridded and station observational data shows that under the NARR forcing, the MM5 model produced generally better results for precipitation, temperature, and humidity than it did under the R1 forcing. These improvements were more apparent in winter and spring. During the warm season, although the use of NARR improved the precipitation estimates statistically at the regional (basin) scale, it substantially underestimated them over the southern upper Rio Grande basin, partly because the NARR forcing data exhibited warm and dry biases in the monsoon-active region during the simulation period and improper domain selection. Analyses also indicate that over mountainous regions, both the Climate Prediction Center's (CPC's) gridded (0.25°) and NARR forcings underestimate precipitation in comparison with station gauge data. © 2008 American Meteorological Society
On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation
The effects of uncertainty in radar-estimated precipitation input on simulated runoff generation from a medium-sized (100-km2) basin in northern Texas are investigated. The radar-estimated rainfall was derived from Next Generation Weather Radar (NEXRAD) Level II base reflectivity data and was supplemented by ground-based rain-gauge data. Two types of uncertainty in the precipitation estimates are considered: (1) those arising from the transformation of reflectivity to rainfall rate and (2) those due to the spatial and temporal representation of the 'true' rainfall field. The study explicitly differentiates between the response of simulated saturation-excess runoff and infiltration-excess runoff to these uncertainties. The results indicate that infiltration-excess runoff generation is much more sensitive than saturation-excess runoff generation to both types of precipitation uncertainty. Furthermore, significant reductions in infiltration-excess runoff volume occur when the temporal and spatial resolution of the precipitation input is decreased. A method is developed to relate this storm-dependent reduction in runoff volume to the spatial heterogeneity of the highest-intensity rainfall periods during a storm
Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information
Several contributions to the hydrological literature have brought into question the continued usefulness of the classical paradigm for hydrologic model calibration. With the growing popularity of sophisticated 'physically based' watershed models (e.g., landsurface hydrology and hydrochemical models) the complexity of the calibration problem has been multiplied many fold. We disagree with the seemingly widespread conviction that the model calibration problem will simply disappear with the availability of more and better field measurements. This paper suggests that the emergence of a new and more powerful model calibration paradigm must include recognition of the inherent multiobjective nature of the problem and must explicitly recognize the role of model error. The results of our preliminary studies are presented. Through an illustrative case study we show that the multiobjective approach is not only practical and relatively simple to implement but can also provide useful information about the limitations of a model
Recommended from our members
Impacts of model calibration on high-latitude land-surface processes: PILPS 2(e) calibration/validation experiments
In the PILPS 2(e) experiment, the Snow Atmosphere Soil Transfer (SAST) land-surface scheme developed from the Biosphere-Atmosphere Transfer Scheme (BATS) showed difficulty in accurately simulating the patterns and quantities of runoff resulting from heavy snowmelt in the high-latitude Torne-Kalix River basin (shared by Sweden and Finland). This difficulty exposes the model deficiency in runoff formations. After representing subsurface runoff and calibrating the parameters, the accuracy of hydrograph prediction improved substantially. However, even with the accurate precipitation and runoff, the predicted soil moisture and its variation were highly "model-dependent". Knowledge obtained from the experiment is discussed. © 2003 Elsevier Science B.V. All rights reserved
Recommended from our members
Bias adjustment of satellite-based precipitation estimation using artificial neural networks-cloud classification system over Saudi Arabia
Precipitation is a key input variable for hydrological and climate studies. Rain gauges can provide reliable precipitation measurements at a point of observations. However, the uncertainty of rain measurements increases when a rain gauge network is sparse. Satellite-based precipitation estimations SPEs appear to be an alternative source of measurements for regions with limited rain gauges. However, the systematic bias from satellite precipitation estimation should be estimated and adjusted. In this study, a method of removing the bias from the precipitation estimation from remotely sensed information using artificial neural networks-cloud classification system (PERSIANN-CCS) over a region where the rain gauge is sparse is investigated. The method consists of monthly empirical quantile mapping of gauge and satellite measurements over several climate zones as well as inverse-weighted distance for the interpolation of gauge measurements. Seven years (2010–2016) of daily precipitation estimation from PERSIANN-CCS was used to test and adjust the bias of estimation over Saudi Arabia. The first 6 years (2010–2015) are used for calibration, while 1 year (2016) is used for validation. The results show that the mean yearly bias is reduced by 90%, and the yearly root mean square error is reduced by 68% during the validation year. The experimental results confirm that the proposed method can effectively adjust the bias of satellite-based precipitation estimations
Handling boundary constraints for particle swarm optimization in high-dimensional search space
Despite the fact that the popular particle swarm optimizer (PSO) is currently being extensively applied to many real-world problems that often have high-dimensional and complex fitness landscapes, the effects of boundary constraints on PSO have not attracted adequate attention in the literature. However, in accordance with the theoretical analysis in [11], our numerical experiments show that particles tend to fly outside of the boundary in the first few iterations at a very high probability in high-dimensional search spaces. Consequently, the method used to handle boundary violations is critical to the performance of PSO. In this study, we reveal that the widely used random and absorbing bound-handling schemes may paralyze PSO for high-dimensional and complex problems. We also explore in detail the distinct mechanisms responsible for the failures of these two bound-handling schemes. Finally, we suggest that using high-dimensional and complex benchmark functions, such as the composition functions in [19], is a prerequisite to identifying the potential problems in applying PSO to many real-world applications because certain properties of standard benchmark functions make problems inexplicit. © 2011 Elsevier Inc. All rights reserved
Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods
Automatic methods for model calibration seek to take advantage of the speed and power of digital computers, while being objective and relatively easy to implement. However, they do not provide parameter estimates and hydrograph simulations that are considered acceptable by the hydrologists responsible for operational forecasting and have therefore not entered into widespread use. In contrast, the manual approach which has been developed and refined over the years to result in excellent model calibrations is complicated and highly labor-intensive, and the expertise acquired by one individual with a specific model is not easily transferred to another person (or model). In this paper, we propose a hybrid approach that combines the strengths of each. A multicriteria formulation is used to "model" the evaluation techniques and strategies used in manual calibration, and the resulting optimization problem is solved by means of a computerized algorithm. The new approach provides a stronger test of model performance than methods that use a single overall statistic to aggregate model errors over a large range of hydrologic behaviors. The power of the new approach is illustrated by means of a case study using the Sacramento Soil Moisture Accounting model
Reply to Comment by B. Renard et al. on "An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction"
Summertime evaluation of REFAME over the Unites States for near real-time high resolution precipitation estimation
Precipitation is the key input for hydrometeorological modeling and applications. In many regions of the world, including populated areas, ground-based measurement of precipitation (whether from radar or rain gauge) is either sparse in time and space or nonexistent. Therefore, high-resolution satellite-based precipitation products are recognized as critical data sources, especially for rapidly-evolving hydrometeorological events such as flash floods which primarily occur during summer/warm seasons. As " proof of concept" , a recently proposed algorithm called Rain Estimation using Forward Adjusted-advection of Microwave Estimates (REFAME) and its variation REFAMEgeo are evaluated over the contiguous United States during summers of 2009 and 2011. Both methods are originally designed for near real-time high resolution precipitation estimation from remotely sensed data. High-resolution Q2 (ground radar) precipitation data, in conjunction with two operational near real-time satellite-based precipitation products (PERSIANN, PERSIANN-CCS) are used as evaluation reference and for comparison. The study is performed at half-hour temporal resolution and at a range of spatial resolutions (0.08-, 0.25-, 0.5-, and 1-degree latitude/longitude). The statistical analyses suggest that REFAMEgeo performs favorably among the studied products in terms of capturing both spatial coverage and intensity of precipitation at near real-time with the temporal resolution offered by geostationary satellites. With respect to volume precipitation, REFAMEgeo together with REFAME demonstrates slight overestimation of intense precipitation and underestimation of light precipitation events. Compared to REFAME, It is observed that REFAMEgeo maintains stable performance, even when the amount of accessible microwave (MW) overpasses is limited. Based on the encouraging outcome of this study which was intended as " proof of concept" , further testing for other seasons and data-rich regions is the next logical step. Upon confirmation of the relative reliability of the algorithm, it is reasonable to recommend the use of its precipitation estimates for data-sparse regions of the world. © 2012 Elsevier B.V
- …
