726 research outputs found

    On the simulation of infiltration- and saturation-excess runoff using radar-based rainfall estimates: Effects of algorithm uncertainty and pixel aggregation

    Get PDF
    The effects of uncertainty in radar-estimated precipitation input on simulated runoff generation from a medium-sized (100-km2) basin in northern Texas are investigated. The radar-estimated rainfall was derived from Next Generation Weather Radar (NEXRAD) Level II base reflectivity data and was supplemented by ground-based rain-gauge data. Two types of uncertainty in the precipitation estimates are considered: (1) those arising from the transformation of reflectivity to rainfall rate and (2) those due to the spatial and temporal representation of the 'true' rainfall field. The study explicitly differentiates between the response of simulated saturation-excess runoff and infiltration-excess runoff to these uncertainties. The results indicate that infiltration-excess runoff generation is much more sensitive than saturation-excess runoff generation to both types of precipitation uncertainty. Furthermore, significant reductions in infiltration-excess runoff volume occur when the temporal and spatial resolution of the precipitation input is decreased. A method is developed to relate this storm-dependent reduction in runoff volume to the spatial heterogeneity of the highest-intensity rainfall periods during a storm

    Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information

    Get PDF
    Several contributions to the hydrological literature have brought into question the continued usefulness of the classical paradigm for hydrologic model calibration. With the growing popularity of sophisticated 'physically based' watershed models (e.g., landsurface hydrology and hydrochemical models) the complexity of the calibration problem has been multiplied many fold. We disagree with the seemingly widespread conviction that the model calibration problem will simply disappear with the availability of more and better field measurements. This paper suggests that the emergence of a new and more powerful model calibration paradigm must include recognition of the inherent multiobjective nature of the problem and must explicitly recognize the role of model error. The results of our preliminary studies are presented. Through an illustrative case study we show that the multiobjective approach is not only practical and relatively simple to implement but can also provide useful information about the limitations of a model

    Handling boundary constraints for particle swarm optimization in high-dimensional search space

    Get PDF
    Despite the fact that the popular particle swarm optimizer (PSO) is currently being extensively applied to many real-world problems that often have high-dimensional and complex fitness landscapes, the effects of boundary constraints on PSO have not attracted adequate attention in the literature. However, in accordance with the theoretical analysis in [11], our numerical experiments show that particles tend to fly outside of the boundary in the first few iterations at a very high probability in high-dimensional search spaces. Consequently, the method used to handle boundary violations is critical to the performance of PSO. In this study, we reveal that the widely used random and absorbing bound-handling schemes may paralyze PSO for high-dimensional and complex problems. We also explore in detail the distinct mechanisms responsible for the failures of these two bound-handling schemes. Finally, we suggest that using high-dimensional and complex benchmark functions, such as the composition functions in [19], is a prerequisite to identifying the potential problems in applying PSO to many real-world applications because certain properties of standard benchmark functions make problems inexplicit. © 2011 Elsevier Inc. All rights reserved

    Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods

    Get PDF
    Automatic methods for model calibration seek to take advantage of the speed and power of digital computers, while being objective and relatively easy to implement. However, they do not provide parameter estimates and hydrograph simulations that are considered acceptable by the hydrologists responsible for operational forecasting and have therefore not entered into widespread use. In contrast, the manual approach which has been developed and refined over the years to result in excellent model calibrations is complicated and highly labor-intensive, and the expertise acquired by one individual with a specific model is not easily transferred to another person (or model). In this paper, we propose a hybrid approach that combines the strengths of each. A multicriteria formulation is used to "model" the evaluation techniques and strategies used in manual calibration, and the resulting optimization problem is solved by means of a computerized algorithm. The new approach provides a stronger test of model performance than methods that use a single overall statistic to aggregate model errors over a large range of hydrologic behaviors. The power of the new approach is illustrated by means of a case study using the Sacramento Soil Moisture Accounting model

    Summertime evaluation of REFAME over the Unites States for near real-time high resolution precipitation estimation

    Get PDF
    Precipitation is the key input for hydrometeorological modeling and applications. In many regions of the world, including populated areas, ground-based measurement of precipitation (whether from radar or rain gauge) is either sparse in time and space or nonexistent. Therefore, high-resolution satellite-based precipitation products are recognized as critical data sources, especially for rapidly-evolving hydrometeorological events such as flash floods which primarily occur during summer/warm seasons. As " proof of concept" , a recently proposed algorithm called Rain Estimation using Forward Adjusted-advection of Microwave Estimates (REFAME) and its variation REFAMEgeo are evaluated over the contiguous United States during summers of 2009 and 2011. Both methods are originally designed for near real-time high resolution precipitation estimation from remotely sensed data. High-resolution Q2 (ground radar) precipitation data, in conjunction with two operational near real-time satellite-based precipitation products (PERSIANN, PERSIANN-CCS) are used as evaluation reference and for comparison. The study is performed at half-hour temporal resolution and at a range of spatial resolutions (0.08-, 0.25-, 0.5-, and 1-degree latitude/longitude). The statistical analyses suggest that REFAMEgeo performs favorably among the studied products in terms of capturing both spatial coverage and intensity of precipitation at near real-time with the temporal resolution offered by geostationary satellites. With respect to volume precipitation, REFAMEgeo together with REFAME demonstrates slight overestimation of intense precipitation and underestimation of light precipitation events. Compared to REFAME, It is observed that REFAMEgeo maintains stable performance, even when the amount of accessible microwave (MW) overpasses is limited. Based on the encouraging outcome of this study which was intended as " proof of concept" , further testing for other seasons and data-rich regions is the next logical step. Upon confirmation of the relative reliability of the algorithm, it is reasonable to recommend the use of its precipitation estimates for data-sparse regions of the world. © 2012 Elsevier B.V
    corecore