625 research outputs found

    Influence of irrigation on land hydrological processes over California

    Get PDF
    In this study, a regional climate model (RCM) is employed to investigate the effect of irrigation on hydrology over California through implementing a “realistic irrigation” scheme. Our results indicate that the RCM with a realistic irrigation scheme commonly practiced in California can capture the soil moisture and evapotranspiration (ET) variation very well in comparison with the available in situ and remote sensing data. The RCM results show significant improvement in comparison with those outputs from the default run and the commonly used runs with fixed soil moisture at field capacity. Furthermore, the model reproduces the observed decreasing trends of the reference ET (i.e., ET0) from the California Irrigation Management Information System (CIMIS). The observed decreasing trend is most likely due to the decreasing trend of downward solar radiation shown by models and CIMIS observations. This issue is fundamental in projecting future irrigation water demand. The deep soil percolation rate changes depending on the irrigation method and irrigation duration. Finally, the model results show that precipitation change due to irrigation in California is relatively small in amount and mainly occurs along the midlatitudes in the western United States

    A new evolutionary search strategy for global optimization of high-dimensional problems

    Get PDF
    Global optimization of high-dimensional problems in practical applications remains a major challenge to the research community of evolutionary computation. The weakness of randomization-based evolutionary algorithms in searching high-dimensional spaces is demonstrated in this paper. A new strategy, SP-UCI is developed to treat complexity caused by high dimensionalities. This strategy features a slope-based searching kernel and a scheme of maintaining the particle population's capability of searching over the full search space. Examinations of this strategy on a suite of sophisticated composition benchmark functions demonstrate that SP-UCI surpasses two popular algorithms, particle swarm optimizer (PSO) and differential evolution (DE), on high-dimensional problems. Experimental results also corroborate the argument that, in high-dimensional optimization, only problems with well-formative fitness landscapes are solvable, and slope-based schemes are preferable to randomization-based ones. © 2011 Elsevier Inc. All rights reserved
    corecore