1,135 research outputs found
Low-temperature specific heat for ferromagnetic and antiferromagnetic orders in CaRu1-xMnxO3
Low-temperature specific heat of CaRu1-xMnxO3 was measured to clarify the
role of d electrons in ferromagnetic and antiferromagnetic orders observed
above x=0.2. Specific heat divided by temperature C_p/T is found to roughly
follow a T^2 function, and relatively large magnitudes of electronic specific
heat coefficient gamma were obtained in wide x range. In particular, gamma is
unchanged from the value at x=0 (84 mJ/K^2 mol) in the paramagnetic state for
x<=0.1, but linearly reduced with increasing x above x= 0.2. These features of
gamma strongly suggest that itinerant d electrons are tightly coupled with the
evolution of magnetic orders in small and intermediate Mn concentrations.Comment: 4 pages, 2 figures, to be published in J. Phys.: Conf. Ser. (SCES
2011, Cambridge, UK
Characterization of the chemical composition of banana peels from southern Brazil across the seasons using nuclear magnetic resonance and chemometrics
Banana peels are a source of important bioactive compounds, such as phenolics, carotenoids, biogenic amines, among others. For industrial usage of that by-product, a certain homogeneity of its chemical composition is claimed, a trait affected by the effect of (a)bioatic ecological factors. In this sense, this study aimed to investigate the banana peels chemical composition, to get insights on eventual metabolic changes caused by the seasons, in southern Brazil. For this purpose, a Nuclear Magnetic Resonance (NMR)-based metabolic profiling strategy was adopted, followed by chemometrics analysis, using the specmine package for the R environment. The obtained results show that the different seasons can, in fact, influence the metabolic composition, namely the levels of metabolites extracted from the bananas peels. The analytical approach herein adopted, i.e., NMR-based metabolomics coupled to chemometrics analysis, seems to enable identifying the chemical heterogeneity of banana peels over the harvest seasons, allowing obtaining standardized extracts for further technological purposes of usage.CAPES -Coordenação de Aperfeiçoamento de Pessoal de Nível Superior(407323/2013-9)info:eu-repo/semantics/publishedVersio
Excitons in T-shaped quantum wires
We calculate energies, oscillator strengths for radiative recombination, and
two-particle wave functions for the ground state exciton and around 100 excited
states in a T-shaped quantum wire. We include the single-particle potential and
the Coulomb interaction between the electron and hole on an equal footing, and
perform exact diagonalisation of the two-particle problem within a finite basis
set. We calculate spectra for all of the experimentally studied cases of
T-shaped wires including symmetric and asymmetric GaAs/AlGaAs and
InGaAs/AlGaAs structures. We study in detail the
shape of the wave functions to gain insight into the nature of the various
states for selected symmetric and asymmetric wires in which laser emission has
been experimentally observed. We also calculate the binding energy of the
ground state exciton and the confinement energy of the 1D quantum-wire-exciton
state with respect to the 2D quantum-well exciton for a wide range of
structures, varying the well width and the Al molar fraction . We find that
the largest binding energy of any wire constructed to date is 16.5 meV. We also
notice that in asymmetric structures, the confinement energy is enhanced with
respect to the symmetric forms with comparable parameters but the binding
energy of the exciton is then lower than in the symmetric structures. For
GaAs/AlGaAs wires we obtain an upper limit for the binding energy
of around 25 meV in a 10 {\AA} wide GaAs/AlAs structure which suggests that
other materials must be explored in order to achieve room temperature
applications. There are some indications that
InGaAs/AlGaAs might be a good candidate.Comment: 20 pages, 10 figures, uses RevTeX and psfig, submitted to Physical
Review
Suzaku X-Ray Imaging and Spectroscopy of Cassiopeia A
Suzaku X-ray observations of a young supernova remnant, Cassiopeia A, were
carried out. K-shell transition lines from highly ionized ions of various
elements were detected, including Chromium (Cr-Kalpha at 5.61 keV). The X-ray
continuum spectra were modeled in the 3.4--40 keV band, summed over the entire
remnant, and were fitted with a simplest combination of the thermal
bremsstrahlung and the non-thermal cut-off power-law models. The spectral fits
with this assumption indicate that the continuum emission is likely to be
dominated by the non-thermal emission with a cut-off energy at > 1 keV. The
thermal-to-nonthermal fraction of the continuum flux in the 4-10 keV band is
best estimated as ~0.1. Non-thermal-dominated continuum images in the 4--14 keV
band were made. The peak of the non-thermal X-rays appears at the western part.
The peak position of the TeV gamma-rays measured with HEGRA and MAGIC is also
shifted at the western part with the 1-sigma confidence. Since the location of
the X-ray continuum emission was known to be presumably identified with the
reverse shock region, the possible keV-TeV correlations give a hint that the
accelerated multi-TeV hadrons in Cassiopeia A are dominated by heavy elements
in the reverse shock region.Comment: Publ. Astron. Soc. Japan 61, pp.1217-1228 (2009
Gain in a quantum wire laser of high uniformity
A multi-quantum wire laser operating in the 1-D ground state has been
achieved in a very high uniformity structure that shows free exciton emission
with unprecedented narrow width and low lasing threshold. Under optical pumping
the spontaneous emission evolves from a sharp free exciton peak to a
red-shifted broad band. The lasing photon energy occurs about 5 meV below the
free exciton. The observed shift excludes free excitons in lasing and our
results show that Coulomb interactions in the 1-D electron-hole system shift
the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
Nickel-Catalyzed Carbon–Carbon Bond-Forming Reactions of Unactivated Tertiary Alkyl Halides: Suzuki Arylations
The first Suzuki cross-couplings of unactivated tertiary alkyl electrophiles are described. The method employs a readily accessible catalyst (NiBr[subscript 2]·diglyme/4,4′-di-tert-butyl-2,2′-bipyridine, both commercially available) and represents the initial example of the use of a group 10 catalyst to cross-couple unactivated tertiary electrophiles to form C–C bonds. This approach to the synthesis of all-carbon quaternary carbon centers does not suffer from isomerization of the alkyl group, in contrast with the umpolung strategy for this bond construction (cross-coupling of a tertiary alkylmetal with an aryl electrophile). Preliminary mechanistic studies are consistent with the generation of a radical intermediate along the reaction pathway.National Institute of General Medical Sciences (U.S.) (R01-GM62871)Merck Research Laboratories (Summer Fellowship
Transient four-wave mixing in T-shaped GaAs quantum wires
The binding energy of excitons and biexcitons and the exciton dephasing in T-shaped GaAs quantum wires is investigated by transient four-wave mixing. The T-shaped structure is fabricated by cleaved-edge overgrowth, and its geometry is engineered to optimize the one-dimensional confinement. In this wire of 6.6×24 nm2 size, we find a one-dimensional confinement of more than 20 meV, an inhomogeneous broadening of 3.4 meV, an exciton binding energy of 12 meV, and a biexciton binding energy of 2.0 meV. A dispersion of the homogeneous linewidth within the inhomogeneous broadening due to phonon-assisted relaxation is observed. The exciton acoustic-phonon-scattering coefficient of 6.1±0.5 μeV/K is larger than in comparable quantum-well structures
Room temperature continuous–wave green lasing from an InGaN microdisk on silicon
Optically pumped green lasing with an ultra low threshold has been achieved using an InGaN/GaN based micro-disk with an undercut structure on silicon substrates. The micro-disks with a diameter of around 1 μm were fabricated by means of a combination of a cost-effective silica micro-sphere approach, dry-etching and subsequent chemical etching. The combination of these techniques both minimises the roughness of the sidewalls of the micro-disks and also produces excellent circular geometry. Utilizing this fabrication process, lasing has been achieved at room temperature under optical pumping from a continuous-wave laser diode. The threshold for lasing is as low as 1 kW/cm2. Time–resolved micro photoluminescence (PL) and confocal PL measurements have been performed in order to further confirm the lasing action in whispering gallery modes and also investigate the excitonic recombination dynamics of the lasing
Identification of major dioxin-like compounds and androgen receptor antagonist in acid-treated tissue extracts of high trophic-level animals
We evaluated the applicability of combining in vitro bioassays with instrument analyses to identify potential endocrine disrupting pollutants in sulfuric acid-treated extracts of liver and/or blubber of high trophic-level animals. Dioxin-like and androgen receptor (AR) antagonistic activities were observed in Baikal seals, common cormorants, raccoon dogs, and finless porpoises by using a panel of rat and human cell-based chemical-activated luciferase gene expression (CALUX) reporter gene bioassays. On the other hand, no activity was detected in estrogen receptor α (ERα)-, glucocorticoid receptor (GR)-, progesterone receptor (PR)-, and peroxisome proliferator-activated receptor γ2 (PPARγ2)-CALUX assays with the sample amount applied. All individual samples (n = 66) showed dioxin-like activity, with values ranging from 21 to 5500 pg CALUX-2,3,7,8-tetrachlorodibenzo-p-dioxin equivalent (TEQ)/g-lipid. Because dioxins are expected to be strong contributors to CALUX-TEQs, the median theoretical contribution of dioxins calculated from the result of chemical analysis to the experimental CALUX-TEQs was estimated to explain up to 130% for all the tested samples (n = 54). Baikal seal extracts (n = 31), but not other extracts, induced AR antagonistic activities that were 8-150 μg CALUX-flutamide equivalent (FluEQ)/g-lipid. p,p′-DDE was identified as an important causative compound for the activity, and its median theoretical contribution to the experimental CALUX-FluEQs was 59% for the tested Baikal seal tissues (n = 25). Our results demonstrate that combining in vitro CALUX assays with instrument analysis is useful for identifying persistent organic pollutant-like compounds in the tissue of wild animals on the basis of in vitro endocrine disruption toxicity. © 2011 American Chemical Society
- …
