885 research outputs found

    Reach of future colliders in probing the structure of the photon

    Get PDF
    A comparison of the potentials of ep and e^+e^-$machines to probe the structure of the photon is performed. In particular, the kinematic reach of a proposed future ep facility, THERA, is compared with those of current colliders, LEP and HERA, and with the proposed linear collider, TESLA. THERA like HERA will use a proton beam of 920 GeV but with an increased electron beam energy of 250 GeV allowing higher scales, Q^2, and lower values of parton momentum fraction in the photon, x_\gamma, to be probed.Comment: 5 pages, 2 figures. To appear in "The THERA Book", DESY-LC-REV-2001-062. IFT 2001/1

    Search for Neutrinoless Double Beta Decay with NEMO 3 and SuperNEMO

    Full text link
    Since 2003 the NEMO~3 experiment has been searching for neutrinoless double beta decay using about 10 kg of enriched isotopes. A limit of T_(1/2)(0nu) > 5.8 10**23 years at 90 % CL has been obtained for 100-Mo from the first two years of data. Several measurements of two-neutrino double beta decays have also been performed. A first NEMO 3 measurement of the half-life of 130-Te is presented, giving a value of T_(1/2)(2nu) = (7.6 +- 1.5 (stat) +- 0.8 (syst)) 10**20 years. In parallel, there is an active R&D programme for the SuperNEMO experiment which is expected to commence data taking in 2012-2013 with 100-200 kg of enriched isotopes.Comment: 6 pages, 3 figures, Proceedings of the 2007 Europhysics Conference on High Energy Physics, in Manchester, England, 19-25 July 200

    Classifying LEP Data with Support Vector Algorithms

    Get PDF
    We have studied the application of different classification algorithms in the analysis of simulated high energy physics data. Whereas Neural Network algorithms have become a standard tool for data analysis, the performance of other classifiers such as Support Vector Machines has not yet been tested in this environment. We chose two different problems to compare the performance of a Support Vector Machine and a Neural Net trained with back-propagation: tagging events of the type e+e- -> ccbar and the identification of muons produced in multihadronic e+e- annihilation events.Comment: 7 pages, 4 figures, submitted to proceedings of AIHENP99, Crete, April 199

    Comparison of deep inelastic electron-photon scattering data with the HERWIG and PHOJET Monte Carlo models

    Get PDF
    Deep inelastic electron-photon scattering is studied in the Q2Q^2 range from 1.2 to 30 GeV2^2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models.Deep inelastic electron-photon scattering is studied in the Q**2 range from 1.2 to 30 GeV**2 using the LEP1 data taken with the ALEPH, L3 and OPAL detectors at centre-of-mass energies close to the mass of the Z boson. Distributions of the measured hadronic final state are corrected to the hadron level and compared to the predictions of the HERWIG and PHOJET Monte Carlo models. For large regions in most of the distributions studied the results of the different experiments agree with one another. However, significant differences are found between the data and the models. Therefore the combined LEP data serve as an important input to improve on the Monte Carlo models

    Experiment Simulation Configurations Used in DUNE CDR

    Full text link
    The LBNF/DUNE CDR describes the proposed physics program and experimental design at the conceptual design phase. Volume 2, entitled The Physics Program for DUNE at LBNF, outlines the scientific objectives and describes the physics studies that the DUNE collaboration will perform to address these objectives. The long-baseline physics sensitivity calculations presented in the DUNE CDR rely upon simulation of the neutrino beam line, simulation of neutrino interactions in the far detector, and a parameterized analysis of detector performance and systematic uncertainty. The purpose of this posting is to provide the results of these simulations to the community to facilitate phenomenological studies of long-baseline oscillation at LBNF/DUNE. Additionally, this posting includes GDML of the DUNE single-phase far detector for use in simulations. DUNE welcomes those interested in performing this work as members of the collaboration, but also recognizes the benefit of making these configurations readily available to the wider community.Comment: 9 pages, 4 figures, configurations in ancillary file

    Detecting and Studying Higgs Bosons at a Photon-Photon Collider

    Full text link
    We examine the potential for detecting and studying Higgs bosons at a photon-photon collider facility associated with a future linear collider. Our study incorporates realistic \gam\gam luminosity spectra based on the most probable available laser technology. Results include detector simulations. We study the cases of: a) a SM-like Higgs boson; b) the heavy MSSM Higgs bosons; c) a Higgs boson with no WW/ZZWW/ZZ couplings from a general two Higgs doublet model.Comment: 52 pages, 26 figures, revised version with new appendi

    Can we distinguish between h^{SM} and h^0 in split supersymmetry?

    Full text link
    We investigate the possibility to distinguish between the Standard Model Higgs boson and the lightest Higgs boson in Split Supersymmetry. We point out that the best way to distinguish between these two Higgs bosons is through the decay into two photons. It is shown that there are large differences of several percent between the predictions for \Gamma(h\to\gamma\gamma) in the two models, making possible the discrimination at future photon-photon colliders. Once the charginos are discovered at the next generation of collider experiments, the well defined predictions for the Higgs decay into two photons will become a cross check to identify the light Higgs boson in Split Supersymmetry.Comment: 8 pages, 3 Figures, typos fixed, version published in J.Phys. G31 (2005) 563-56

    Higgs boson production in photon-photon collision at ILC: a comparative study in different little Higgs models

    Full text link
    We study the process \gamma\gamma->h->bb_bar at ILC as a probe of different little Higgs models, including the simplest little Higgs model (SLH), the littlest Higgs model (LH), and two types of littlest Higgs models with T-parity (LHT-I, LHT-II). Compared with the Standard Model (SM) prediction, the production rate is found to be sizably altered in these little Higgs models and, more interestingly, different models give different predictions. We find that the production rate can be possibly enhanced only in the LHT-II for some part of the parameter space, while in all other cases the rate is suppressed. The suppression can be 10% in the LH and as much as 60% in both the SLH and the LHT-I/LHT-II. The severe suppression in the SLH happens for a large \tan\beta and a small m_h, in which the new decay mode h->\eta\eta (\eta is a light pseudo-scalar) is dominant; while for the LHT-I/LHT-II the large suppression occurs when f and m_h are both small so that the new decay mode h->A_H A_H is dominant. Therefore, the precision measurement of such a production process at the ILC will allow for a test of these models and even distinguish between different scenarios.Comment: Version in JHEP (h-g-g & h-gamma-gamma expressions added

    Lambda and Antilambda polarization from deep inelastic muon scattering

    Full text link
    We report results of the first measurements of Lambda and Antilambda polarization produced in deep inelastic polarized muon scattering on the nucleon. The results are consistent with an expected trend towards positive polarization with increasing x_F. The polarizations of Lambda and Antilambda appear to have opposite signs. A large negative polarization for Lambda at low positive x_F is observed and is not explained by existing models.A possible interpretation is presented.Comment: 9 pages, 2 figure
    • …
    corecore