293 research outputs found

    Auger decay, Spin-exchange, and their connection to Bose-Einstein condensation of excitons in Cu_2O

    Full text link
    In view of the recent experiments of O'Hara, et al. on excitons in Cu_2O, we examine the interconversion between the angular-momentum triplet-state excitons and the angular-momentum singlet-state excitons by a spin-exchange process which has been overlooked in the past. We estimate the rate of this particle-conserving mechanism and find a substantially higher value than the Auger process considered so far. Based on this idea, we give a possible explanation of the recent experimental observations, and make certain predictions, with the most important being that the singlet-state excitons in Cu_2O is a very serious candidate for exhibiting the phenomenon of Bose-Einstein condensation.Comment: 4 pages, RevTex, 1 ps figur

    Comparison of Bond Character in Hydrocarbons and Fullerenes

    Full text link
    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.

    Fine structure of excitons in Cu2_2O

    Full text link
    Three experimental observations on 1s-excitons in Cu2_2O are not consistent with the picture of the exciton as a simple hydrogenic bound state: the energies of the 1s-excitons deviate from the Rydberg formula, the total exciton mass exceeds the sum of the electron and hole effective masses, and the triplet-state excitons lie above the singlet. Incorporating the band structure of the material, we calculate the corrections to this simple picture arising from the fact that the exciton Bohr radius is comparable to the lattice constant. By means of a self-consistent variational calculation of the total exciton mass as well as the ground-state energy of the singlet and the triplet-state excitons, we find excellent agreement with experiment.Comment: Revised abstract; 10 pages, revtex, 3 figures available from G. Kavoulakis, Physics Department, University of Illinois, Urban

    Theory of Bose-Einstein condensation and superfluidity of two-dimensional polaritons in an in-plane harmonic potential

    Full text link
    Recent experiments have shown that it is possible to create an in-plane harmonic potential trap for a two-dimensional (2D) gas of exciton-polaritons in a microcavity structure, and evidence has been reported of Bose-Einstein condensation of polaritons accumulated in this type of trap. We present here the theory of Bose-Einstein condensation (BEC) and superfluidity of the exciton polaritons in a harmonic potential trap. Along the way, we determine a general method for defining the superfluid fraction in a 2D trap, in terms of angular momentum representation. We show that in the continuum limit, as the trap becomes shallower the superfluid fraction approaches the 2D Kosterlitz-Thouless limit, while the condensate fraction approaches zero, as expected.Comment: 14 pages, 5 figures. Accepted for publication by Physical review

    Thermal poling induced second-order nonlinearity in femtosecond-laser- modified fused silica

    Get PDF
    Thermal poling was utilized to induce second-order nonlinearity in regions of fused silica modified by 771 nm femtosecond laser pulses. With second-harmonic microscopy, it was found that the nonlinearity in the laser-modified region was much lower than that in nonmodified regions. This is attributed to a more rigid glass network after irradiation by the femtosecond laser pulses and/or lack of mobile alkali ions. Measurement of the distribution of chemical elements in the femtosecond-laser-modified region in a soda lime glass revealed a lower level of sodium ions. © 2008 American Institute of Physics

    Traces of stimulated bosonic exciton-scattering in semiconductor luminescence

    Full text link
    We observe signatures of stimulated bosonic scattering of excitons, a precursor of Bose-Einstein-Condensation (BEC), in the photoluminescence of semiconductor quantum wells. The optical decay of a spinless molecule of two excitons (biexciton) into an exciton and a photon with opposite angular momenta is subject to bosonic enhancement in the presence of other excitons. In a spin polarized gas of excitons the bosonic enhancement breaks the symmetry of two equivalent decay channels leading to circularly polarized luminescence of the biexciton with the sign opposite to the excitonic luminescence. Comparison of experiment and many body theory proves stimulated scattering of excitons, but excludes the presence of a fully condensed BEC-like state.Comment: 5 page

    Dynamics of a polariton condensate transistor switch

    Full text link
    We present a time-resolved study of the logical operation of a polariton condensate transistor switch. Creating a polariton condensate (source) in a GaAs ridge-shaped microcavity with a non-resonant pulsed laser beam, the polariton propagation towards a collector, at the ridge edge, is controlled by a second weak pulse (gate), located between the source and the collector. The experimental results are interpreted in the light of simulations based on the generalized Gross-Pitaevskii equation, including incoherent pumping, decay and energy relaxation within the condensate.Comment: 4 pages, 2 figure

    Long exciton spin memory in coupled quantum wells

    Full text link
    Spatially indirect excitons in a coupled quantum well structure were studied by means of polarization and time resolved photoluminescence. A strong degree of circular polarization (> 50%) in emission was achieved when the excitation energy was tuned into resonance with the direct exciton state. The indirect transition remained polarized several tens of nanoseconds after the pumping laser pulse, demonstrating directly a very long relaxation time of exciton spin. The observed spin memory effect exceeds the radiative lifetime of the indirect excitons.Comment: 4 pages, 2 figure
    • …
    corecore