959 research outputs found
Multifragmentation in Collisions of 4.4gev-Deuterons with Gold Target
The relative velocity correlation function of pairs of intermediate mass
fragments has been studied for d+Au collitions at 4.4 GeV. Experimental
correlation functions are compared to that obtained by multibody Coulomb
trajectory calculations under the assumption of various decay timees of the
fragmenting system. The combined approach with the empirically modified
intranuclear cascade code followed by the statistical multifragmentation model
was used to generate the starting conditions for these calculations. The
fragment emossion time is found to be less than 40 fm/c.Comment: Accepted for publication in Bulletin of the Russian Academy of
Sciences. Physic
Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques
Many technologies based on cells containing alkali-metal atomic vapor benefit
from the use of anti-relaxation surface coatings in order to preserve atomic
spin polarization. In particular, paraffin has been used for this purpose for
several decades and has been demonstrated to allow an atom to experience up to
10,000 collisions with the walls of its container without depolarizing, but the
details of its operation remain poorly understood. We apply modern surface and
bulk techniques to the study of paraffin coatings, in order to characterize the
properties that enable the effective preservation of alkali spin polarization.
These methods include Fourier transform infrared spectroscopy, differential
scanning calorimetry, atomic force microscopy, near-edge X-ray absorption fine
structure spectroscopy, and X-ray photoelectron spectroscopy. We also compare
the light-induced atomic desorption yields of several different paraffin
materials. Experimental results include the determination that crystallinity of
the coating material is unnecessary, and the detection of C=C double bonds
present within a particular class of effective paraffin coatings. Further study
should lead to the development of more robust paraffin anti-relaxation
coatings, as well as the design and synthesis of new classes of coating
materials.Comment: 12 pages, 12 figures. Copyright 2010 American Institute of Physics.
This article may be downloaded for personal use only. Any other use requires
prior permission of the author and the American Institute of Physics. The
following article appeared in the Journal of Chemical Physics and may be
found at http://link.aip.org/link/?JCP/133/14470
Condensation of a tetrahedra rigid-body libration mode in HoBaCo4O7 : the origin of phase transition at 355 K
Rietveld profiles, Moessbauer spectra and x-ray absorption fine structure
(XAFS) were analyzed through the structural phase transition at Ts = 355 K in
HoBaCo4O7. Excess of the oxygen content over O7 was avoided via annealing the
samples in argon flow at 600 degree C. Space groups (S.G.) Pbn21c and P63mc
were used to refine the structure parameters in the low- and high-temperature
phases, respectively. Additionally, the Cmc21 symmetry was considered as a
concurrent model of structure of the low-temperature phase. In the
high-temperature phase, severe anisotropy of thermal motion of the major part
of the oxygen atoms was observed. This anisotropic motion turns to be quenched
as the sample is cooled below Ts. The variation of quadrupole splitting near Ts
is not similar to a steplike anomaly frequently seen at the charge-ordering
transition. We observe instead a dip-like anomaly of the average quadrupole
splitting near Ts. Narrow distribution of the electric field gradient (EFG)
over different cobalt sites is observed and explained on the basis of
point-charge model. XAFS spectra show no evidence of significant difference
between YBaCo4O7 (T > Ts) and HoBaCo4O7 (T < Ts). The origin of the transition
at Ts is ascribed to the condensation of the libration phonon mode associated
with the rigid-body rotational movements of the starlike tetrahedral units, the
building blocks of kagome network. It is shown that the condensation of the
libration mode is not compatible with translation symmetry for the hexagonal
S.G., but compatible for the orthorhombic S.G. The orthorhombic lattice
parameters and EFG components (Vxx, Vyy, Vzz) vary smoothly with temperature at
approaching Ts and closely follow each other.Comment: 13 figure
Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems
Microbial CRISPR-Cas systems are divided into Class 1, with multisubunit effector complexes, and Class 2, with single protein effectors. Currently, only two Class 2 effectors, Cas9 and Cpf1, are known. We describe here three distinct Class 2 CRISPR-Cas systems. The effectors of two of the identified systems, C2c1 and C2c3, contain RuvC-like endonuclease domains distantly related to Cpf1. The third system, C2c2, contains an effector with two predicted HEPN RNase domains. Whereas production of mature CRISPR RNA (crRNA) by C2c1 depends on tracrRNA, C2c2 crRNA maturation is tracrRNA independent. We found that C2c1 systems can mediate DNA interference in a 5'-PAM-dependent fashion analogous to Cpf1. However, unlike Cpf1, which is a single-RNA-guided nuclease, C2c1 depends on both crRNA and tracrRNA for DNA cleavage. Finally, comparative analysis indicates that Class 2 CRISPR-Cas systems evolved on multiple occasions through recombination of Class 1 adaptation modules with effector proteins acquired from distinct mobile elements.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049)National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) (Grant 5R01DK097768-03)National Institutes of Health (U.S.) (Grant GM10407
The Monte Carlo Event Generator DPMJET-III
A new version of the Monte Carlo event generator DPMJET is presented. It is a
code system based on the Dual Parton Model and unifies all features of the
DTUNUC-2, DPMJET-II and PHOJET 1.12 event generators. DPMJET-III allows the
simulation of hadron-hadron, hadron-nucleus, nucleus-nucleus, photon-hadron,
photon-photon and photon-nucleus interactions from a few GeV up to the highest
cosmic ray energies.Comment: 6 pages, Talk given at the Conference ``Monte Carlo 2000'', Lisbon,
Portugal, 23-26 Oct. 200
Analysis of hadron production in nucleus-nucleus interactions up to and out of kinematical limit of free NN-collisions in the frame of FRITIOF model
In the framework of the modified FRITIOF model, the inclusive spectra of the
cumulative -, -mesons and protons produced in the
nucleus-nucleus interactions at 4.5 GeV/c/nucleon and 4.2 GeV/c/nucleon are
calculated. It is shown that the model reproduces qualitatively, and in some
cases quantitatively the main experimental regularities of -mesons
production, and "soft" part of the proton spectra. According to the model the
production of the cumulative particles is connected with the mechanism of the
"soft" nucleon-nucleon interaction.Comment: 12 pages, 11 figure
Photoproduction off Nuclei and Point-like Photon Interactions Part I: Cross Sections and Nuclear Shadowing
High energy photoproduction off nuclear targets is studied within the
Glauber-Gribov approximation. The photon is assumed to interact as a
-system according to the Generalized Vector Dominance Model and as a
``bare photon'' in direct scattering processes with target nucleons. We
calculate total cross sections for interactions of photons with nuclei taking
into account coherence length effects and point-like interactions of the
photon. Results are compared to data on photon-nucleus cross sections, nuclear
shadowing, and quasi- elastic -production. Extrapolations of cross
sections and of the shadowing behaviour to high energies are given.Comment: 15 pages, 12 figure
RNA targeting with CRISPR–Cas13
RNA has important and diverse roles in biology, but molecular tools to manipulate and measure it are limited. For example, RNA interference1-3 can efficiently knockdown RNAs, but it is prone to off-target effects4, and visualizing RNAs typically relies on the introduction of exogenous tags5. Here we demonstrate that the class 2 type VI6,7 RNA-guided RNA-targeting CRISPR-Cas effector Cas13a8(previously known as C2c2) can be engineered for mammalian cell RNA knockdown and binding. After initial screening of 15 orthologues, we identified Cas13a from Leptotrichia wadei (LwaCas13a) as the most effective in an interference assay in Escherichia coli. LwaCas13a can be heterologously expressed in mammalian and plant cells for targeted knockdown of either reporter or endogenous transcripts with comparable levels of knockdown as RNA interference and improved specificity. Catalytically inactive LwaCas13a maintains targeted RNA binding activity, which we leveraged for programmable tracking of transcripts in live cells. Our results establish CRISPR-Cas13a as a flexible platform for studying RNA in mammalian cells and therapeutic development.National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institute of Mental Health (U.S.) (Grant 1R01-MH110049
Temporary Acceleration of Electrons While Inside an Intense Electromagnetic Pulse
A free electron can temporarily gain a very significant amount of energy if
it is overrun by an intense electromagnetic wave. In principle, this process
would permit large enhancements in the center-of-mass energy of
electron-electron, electron-positron and electron-photon interactions if these
take place in the presence of an intense laser beam. Practical considerations
severely limit the utility of this concept for contemporary lasers incident on
relativistic electrons. A more accessible laboratory phenomenon is
electron-positron production via an intense laser beam incident on a gas.
Intense electromagnetic pulses of astrophysical origin can lead to very
energetic photons via bremsstrahlung of temporarily accelerated electrons
- …
