596 research outputs found
Gap probabilities in non-Hermitian random matrix theory
We compute the gap probability that a circle of
radius r around the origin contains exactly k complex eigenvalues. Four different ensembles of random matrices are considered: the Ginibre ensembles and their chiral complex counterparts, with both complex (beta=2) or quaternion real (beta=4) matrix elements. For general non-Gaussian weights we give a Fredholm determinant or Pfaffian representation respectively, depending on the non-Hermiticity parameter. At maximal non-Hermiticity, that is for rotationally invariant weights, the product of Fredholm eigenvalues for beta=4 follows from beta=2 by skipping every second factor, in contrast to the known relation for Hermitian ensembles. On additionally choosing Gaussian weights we give new explicit expressions for the Fredholm eigenvalues in the chiral case, in terms of Bessel-K and incomplete Bessel-I functions. This compares to known results for the Ginibre ensembles in terms of incomplete exponentials. Furthermore we present an asymptotic expansion of the logarithm of the gap probability for large argument r at large N in all four ensembles, up to including the third order linear term. We can provide strict upper and lower bounds and present numerical evidence for its conjectured values, depending on the number of exact zero eigenvalues in the chiral ensembles. For the Ginibre ensemble at beta=2 exact results were previously derived by Forrester
Optical Reflection Studies of Damage in Ion Implanted Silicon
Optical (3–6.5 eV) reflection spectra are presented for crystalline Si implanted at room temperature with 40 keV Sb ions to doses of less than 2×10^15/cm^2. These spectra, and their deviation from the reflection spectrum of crystalline Si, are discussed in terms of a model based on the average dielectric properties of the implanted region. For samples having a high ion dose (>10^15/cm^2) the observed spectra resemble the spectra of sputtered Si films. Anneal characteristics of the reflection spectra are found to be dose dependent. These observations are compared to, and found to substantiate, the results of other experimental techniques for studying lattice damage in Si
Integral geometry of complex space forms
We show how Alesker's theory of valuations on manifolds gives rise to an
algebraic picture of the integral geometry of any Riemannian isotropic space.
We then apply this method to give a thorough account of the integral geometry
of the complex space forms, i.e. complex projective space, complex hyperbolic
space and complex euclidean space. In particular, we compute the family of
kinematic formulas for invariant valuations and invariant curvature measures in
these spaces. In addition to new and more efficient framings of the tube
formulas of Gray and the kinematic formulas of Shifrin, this approach yields a
new formula expressing the volumes of the tubes about a totally real
submanifold in terms of its intrinsic Riemannian structure. We also show by
direct calculation that the Lipschitz-Killing valuations stabilize the subspace
of invariant angular curvature measures, suggesting the possibility that a
similar phenomenon holds for all Riemannian manifolds. We conclude with a
number of open questions and conjectures.Comment: 68 pages; minor change
Two dimensional fermions in three dimensional YM
Dirac fermions in the fundamental representation of SU(N) live on the surface
of a cylinder embedded in and interact with a three dimensional SU(N)
Yang Mills vector potential preserving a global chiral symmetry at finite .
As the circumference of the cylinder is varied from small to large, the chiral
symmetry gets spontaneously broken in the infinite limit at a typical bulk
scale. Replacing three dimensional YM by four dimensional YM introduces
non-trivial renormalization effects.Comment: 21 pages, 7 figures, 5 table
- …