1,153 research outputs found

    A Game-theoretic Formulation of the Homogeneous Self-Reconfiguration Problem

    Get PDF
    In this paper we formulate the homogeneous two- and three-dimensional self-reconfiguration problem over discrete grids as a constrained potential game. We develop a game-theoretic learning algorithm based on the Metropolis-Hastings algorithm that solves the self-reconfiguration problem in a globally optimal fashion. Both a centralized and a fully distributed algorithm are presented and we show that the only stochastically stable state is the potential function maximizer, i.e. the desired target configuration. These algorithms compute transition probabilities in such a way that even though each agent acts in a self-interested way, the overall collective goal of self-reconfiguration is achieved. Simulation results confirm the feasibility of our approach and show convergence to desired target configurations.Comment: 8 pages, 5 figures, 2 algorithm

    Cooperative Control and Potential Games

    Get PDF
    We present a view of cooperative control using the language of learning in games. We review the game-theoretic concepts of potential and weakly acyclic games, and demonstrate how several cooperative control problems, such as consensus and dynamic sensor coverage, can be formulated in these settings. Motivated by this connection, we build upon game-theoretic concepts to better accommodate a broader class of cooperative control problems. In particular, we extend existing learning algorithms to accommodate restricted action sets caused by the limitations of agent capabilities and group based decision making. Furthermore, we also introduce a new class of games called sometimes weakly acyclic games for time-varying objective functions and action sets, and provide distributed algorithms for convergence to an equilibrium

    Dynamics in atomic signaling games

    Full text link
    We study an atomic signaling game under stochastic evolutionary dynamics. There is a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss
    corecore