123 research outputs found

    Evolution of internal Modes, disruptions and high-z impurities at high density in Pulsator

    No full text

    Profile correction to electron temperature and enhancement factor in soft x-ray pulse-height-analysis measurements in tokamaks

    Full text link
    Because soft x-ray pulse-height-analysis (PHA) spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. Assuming that the profile Ansatz for the electron temperature and density is of the form n/sub eo/(1-(ra)/sup 2/)/sup ..cap alpha../ and kT/sub eo/(1--(ra)/sup 2/)/sup ..beta../, we obtain the correction factors for the electron temperature and the enhancement factor as a function of the profile coefficients ..cap alpha.. and ..beta.. and the energy at which the evaluation was made. The corrected values of the temperature are typically between 1 to 10% higher than the values derived from the raw chordal spectra. We also correct the measured radiation intensity for the profile effects. Finally, the spectrum distortion due to pulse pile-up effects is evaluated. A set of curves is given from which the distortion of the spectrum can be obtained, if the electron temperature, the Be or Al filter thickness, and the electronic parameters of the acquisition system are known. 7 refs., 23 figs

    Satellite spectra for helium-like titanium. Part II

    Get PDF
    K/sup ..cap alpha../ x-ray spectra of helium-like titanium, Ti XXI, from Tokamak Fusion Test Reactor (TFTR) plasmas have been observed with a high resolution crystal spectrometer and have been used as a diagnostic of central plasma parameters. The data allow detailed comparison with recent theoretical predictions for the Ti XXI helium-like lines and the associated satellite spectrum in the wavelength range from 2.6000 to 2.6400 A. Improved values for the excitation rate coefficients of the Ti XXI resonance line, the intercombination lines and the forbidden line, and new theoretical results on the wavelengths and transition probabilities for beryllium-like satellites due to transitions of the type 1s/sup 2/ 2lnl' - 1s2p2l'' nl'' with n = 2-4 have been calculated

    Overview of ASDEX Upgrade Results

    Get PDF

    Overview of ASDEX Upgrade results

    Get PDF
    Recent results from the ASDEX Upgrade experimental campaigns 2001 and 2002 are presented. An improved understanding of energy and particle transport emerges in terms of a 'critical gradient' model for the temperature gradients. Coupling this to particle diffusion explains most of the observed behaviour of the density profiles, in particular, the finding that strong central heating reduces the tendency for density profile peaking. Internal transport barriers (ITBs) with electron and ion temperatures in excess of 20 keV (but not simultaneously) have been achieved. By shaping the plasma, a regime with small type II edge localized modes (ELMs) has been established. Here, the maximum power deposited on the target plates was greatly reduced at constant average power. Also, an increase of the ELM frequency by injection of shallow pellets was demonstrated. ELM free operation is possible in the quiescent H-mode regime previously found in DIII-D which has also been established on ASDEX Upgrade. Regarding stability, a regime with benign neoclassical tearing modes (NTMs) was found. During electron cyclotron current drive (ECCD) stabilization of NTMs, ÎČN could be increased well above the usual onset level without a reappearance of the NTM. Electron cyclotron resonance heating and ECCD have also been used to control the sawtooth repetition frequency at a moderate fraction of the total heating power. The inner wall of the ASDEX Upgrade vessel has increasingly been covered with tungsten without causing detrimental effects on the plasma performance. Regarding scenario integration, a scenario with a large fraction of noninductively driven current (≄50%), but without ITB has been established. It combines improved confinement (τE/τITER98 ≈ 1.2) and stability (ÎČN ≀ 3.5) at high Greenwald fraction (ne/nGW ≈ 0.85) in steady state and with type II ELMy edge and would offer the possibility for long pulses with high fusion power at reduced current in ITER
    • 

    corecore