64 research outputs found

    Interactive and Single Effects of Ectomycorrhiza Formation and Bacillus cereus on Metallothionein MT1 Expression and Phytoextraction of Cd and Zn by Willows

    Get PDF
    Single and joint ectomycorrhizal (+ Hebeloma mesophaeum) and bacterial (+ Bacillus cereus) inoculations of willows (Salix viminalis) were investigated for their potential and mode of action in the promotion of cadmium (Cd) and zinc (Zn) phytoextraction. Dual fungal and bacterial inoculations promoted the biomass production of willows in contaminated soil. Single inoculations either had no effect on the plant growth or inhibited it. All inoculated willows showed increased concentrations of nutritional elements (N, P, K and Zn) and decreased concentrations of Cd in the shoots. The lowest biomass production and concentration of Cd in the willows (+ B. cereus) were combined with the strongest expression of metallothioneins. It seems that biotic stress from bacterial invasion increased the synthesis of these stress proteins, which responded in decreased Cd concentrations. Contents of Cd and Zn in the stems of willows were combination-specific, but were always increased in dual inoculated plants. In conclusion, single inoculations with former mycorrhiza-associated B. cereus strains decreased the phytoextraction efficiency of willows by causing biotic stress. However, their joint inoculation with an ectomycorrhizal fungus is a very promising method for promoting the phytoextraction of Cd and Zn through combined physiological effects on the plant

    Spectroscopic characterization of gold nanoparticles formed by cells and S-layer protein of Bacillus sphaericus JG-A12

    No full text
    Abstract The strain Bacillus sphaericus JG-A12, isolated from a uranium mining waste pile near the town of Johanngeorgenstadt, is capable of selective and reversible accumulation of U, Cu, Pb, Al, and Cd from uranium waste waters. The cells of this strain are enveloped by a surface layer protein (S-layer). The highly regular structure of this S-layer with many pores of identical size offers good binding sites for different kinds of molecules and provides nucleation sites for the formation of metal nanoclusters or minerals. In this study we demonstrate that B. sphaericus JG-A12 cells and their purified S-layer protein were capable to reduce Au to metallic nanoclusters in the presence of reducing agents such as molecular H 2 . The gold nanoparticles were regularly distributed and sized according to the pores of the protein lattice. The metallic nature of the clusters was confirmed by different techniques such as extended X-ray absorption fine structure (EXAFS) spectroscopy, X-ray absorption near edge (XANES) spectroscopy, UV-vis spectroscopy and X-ray powder diffraction (XRD). The size of the gold nanoparticles was estimated to be almost 1 nm. Our results demonstrate that B. sphaericus JG-A12 can be used to prepare gold nanoparticles tailor-made for industrial applications

    The microbial ecology of land and water contaminated with radioactive waste; towards the development of bioremediation options for the nuclear industry

    No full text
    The high financial and environmental costs associated with remediation of land contaminated through 60 years of global nuclear activity has underpinned the development of new passive in situ bioremediation processes for sites contaminated with nuclear waste. Many of these processes rely on successfully harnessing newly discovered natural biogeochemical cycles to manage contamination from key radionuclides. Of particular note are strategies that involve enzymatic and indirect redox transformations of actinides such as uranium, neptunium and plutonium and fission products such as technetium. This chapter will discuss the recent advances that have been made in understanding the microbial colonization of radioactive environments and the biological basis of microbial transformations of radioactive waste in these settings. In addition, the impact of co-contaminants such as nitrate on both the microbial ecology of sediments and radionuclide speciation will also be discussed

    Bacterial-Metal/Radionuclide interaction Basis research and bioremediation

    No full text
    SIGLEAvailable from TIB Hannover: RR 1847(252) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman
    corecore