199 research outputs found

    Robust Output Regulation: Optimization-Based Synthesis and Event-Triggered Implementation

    Get PDF
    We investigate the problem of practical output regulation: Design a controller that brings the system output in the vicinity of a desired target value while keeping the other variables bounded. We consider uncertain systems that are possibly nonlinear and the uncertainty of the linear part is modeled element-wise through a parametric family of matrix boxes. An optimization-based design procedures is proposed that delivers a continuous-time control and estimates the maximal regulation error. We also analyze an event-triggered emulation of this controller, which can be implemented on a digital platform, along with an explicit estimates of the regulation error

    Nucleate pool boiling heat transfer of binary nano mixtures under atmospheric pressure around a smooth horizontal cylinder

    Get PDF
    Influence of Al2O3 nanoparticles on nucleate pool boiling heat transfer of diluted binary water-glycerol mixtures has been experimentally measured up to heat flux 91 kW/m2 at diluted volume fractions of 1% to 5% of glycerol into pure water at volumetric concentrations 0.5%, 1% and 1.5% of Al2O3 nanoparticles. Obtained results indicate that presence of nanoparticles into the mixtures result in increasing the pool boiling heat transfer coefficient values and also result in decreasing the wall superheat temperature of surface. Increased values of heat transfer are increased with increasing the volume fractions of Al2O3 too. Generally, it is concurred that Al2O3 nanoparticles typically enhance the pool boiling heat transfer coefficient of binary water-glycerol mixture in comparison with absence of nanoparticles circumstances, up to 25% at 1.5% Al2O3. Additionally, new simple semi - mathematical model has been proposed for a rough estimating of enhanced values with uncertainty about 8%

    Nucleate Pool Boiling Heat Transfer to Al2O3-Water and TiO2-Water Nanofluids on Horizontal Smooth Tubes with Dissimilar Homogeneous Materials

    Get PDF
    Nucleate pool boiling heat transfer coefficients of Al2O3-water and TiO2-water nanofluids have been experimentally measured on three horizontal tubes with different materials and similar roughness under atmospheric pressure. Results revealed that the presence of nanoparticles in the base fluid leads to an increase in pool boiling heat transfer coefficients on stainless steel and brass tubes in contrast to copper tube. The effect of different materials on excess temperature around the surface of the tubes has also been investigated. In addition, experimental investigations on the effect of different nanoparticles on nucleate boiling heat transfer have been conducted at volumetric concentrations of 0.1 %, 0.5 %, and 1 % of nanoparticles. Results indicated that the presence of nanoparticles have no effect on the pool boiling heat transfer coefficient for the copper tube. Variations of surface excess temperature for the copper tube were higher in comparison with that of the other tubes tested

    Clinical efficacy and mechanistic evaluation of aflibercept for proliferative diabetic retinopathy (acronym CLARITY): a multicentre phase IIb randomised active-controlled clinical trial

    Get PDF
    Introduction Proliferative diabetic retinopathy (PDR) is the main cause of severe visual loss in people with diabetes mellitus. The standard treatment for this condition is panretinal photocoagulation (PRP). This laser treatment is inherently destructive, with predictable adverse effects on visual function, and a safer alternative is required. Intravitreal injection of vascular endothelial growth factor (VEGF) inhibitors can induce short-term regression of retinal neovascularisation. The aim of this randomised controlled trial is to determine the efficacy, safety and cost-effectiveness of intravitreal aflibercept, an inhibitor of VEGF-A, VEGF-B and placental growth factor (PLGF), in PDR, and to investigate the impact on local oxygenation. Methods and analysis This is a phase IIb randomised controlled single-masked multicentre clinical trial to determine the impact of repeated intravitreal aflibercept injections in the treatment and prevention of PDR. 220 participants with treatment-naïve or treated but active retinal neovascularisation in at least one eye will be randomly allocated 1:1 to intravitreal aflibercept injections or PRP for a period of 52�weeks. The primary outcome is the change in best-corrected visual acuity in the study eye at 52�weeks. Secondary outcomes include changes from baseline in other visual functions, anatomical changes and cost-effectiveness. Ocular and non-ocular adverse events will also be reported over 52�weeks. Ethics and dissemination The study has been approved by the National Research Ethics Service (NRES) committee with respect to scientific content and compliance with applicable research and human subjects� regulations. Findings will be reported through scientific publications and research conferences. The results of this study will provide clinical evidence for the feasibility, efficacy safety and cost-effectiveness of intravitreal aflibercept for PDR

    Chemical Derivatization Processes Applied to Amine Determination in Samples of Different Matrix Composition

    Full text link

    Negated bio-events: Analysis and identification

    Get PDF
    Background: Negation occurs frequently in scientific literature, especially in biomedical literature. It has previously been reported that around 13% of sentences found in biomedical research articles contain negation. Historically, the main motivation for identifying negated events has been to ensure their exclusion from lists of extracted interactions. However, recently, there has been a growing interest in negative results, which has resulted in negation detection being identified as a key challenge in biomedical relation extraction. In this article, we focus on the problem of identifying negated bio-events, given gold standard event annotations.Results: We have conducted a detailed analysis of three open access bio-event corpora containing negation information (i.e., GENIA Event, BioInfer and BioNLP'09 ST), and have identified the main types of negated bio-events. We have analysed the key aspects of a machine learning solution to the problem of detecting negated events, including selection of negation cues, feature engineering and the choice of learning algorithm. Combining the best solutions for each aspect of the problem, we propose a novel framework for the identification of negated bio-events. We have evaluated our system on each of the three open access corpora mentioned above. The performance of the system significantly surpasses the best results previously reported on the BioNLP'09 ST corpus, and achieves even better results on the GENIA Event and BioInfer corpora, both of which contain more varied and complex events.Conclusions: Recently, in the field of biomedical text mining, the development and enhancement of event-based systems has received significant interest. The ability to identify negated events is a key performance element for these systems. We have conducted the first detailed study on the analysis and identification of negated bio-events. Our proposed framework can be integrated with state-of-the-art event extraction systems. The resulting systems will be able to extract bio-events with attached polarities from textual documents, which can serve as the foundation for more elaborate systems that are able to detect mutually contradicting bio-events. Š 2013 Nawaz et al.; licensee BioMed Central Ltd

    Green synthesis of silver nanoparticles using green tea leaves: Experimental study on the morphological, rheological and antibacterial behaviour

    Full text link
    In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.Maryam Nakhjavani, V. Nikkhah, M.M. Sarafraz, Saeed Shoja, Marzieh Sarafra
    • …
    corecore