233 research outputs found

    Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations

    Get PDF
    We show that full-image micro-PIV analysis in combination with images of transient particle motion is a powerful tool for experimental studies of acoustic radiation forces and acoustic streaming in microfluidic chambers under piezo-actuation in the MHz range. The measured steady-state motion of both large 5 um and small 1 um particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound waves in the given experimental microsystems. This interpretation is supported by numerical solutions of the corresponding acoustic wave equation.Comment: RevTex, 10 pages, 9 eps figures; NOTE first authors changed his name to S. Melker Hagsater in the published versio

    Chemical analysis of acoustically levitated drops by Raman spectroscopy

    Get PDF
    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid–base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension

    Standing waves for acoustic levitation

    Get PDF
    Standing waves are the most popular method to achieve acoustic trapping. Particles with greater acoustic impedance than the propagation medium will be trapped at the pressure nodes of a standing wave. Acoustic trapping can be used to hold particles of various materials and sizes, without the need of a close-loop controlling system. Acoustic levitation is a helpful and versatile tool for biomaterials and chemistry, with applications in spectroscopy and lab-on-a-droplet procedures. In this chapter, multiple methods are presented to simulate the acoustic field generated by one or multiple emitters. From the acoustic field, models such as the Gor'kov potential or the Flux Integral are applied to calculate the force exerted on the levitated particles. The position and angle of the acoustic emitters play a fundamental role, thus we analyse commonly used configurations such as emitter and reflector, two opposed emitters, or arrangements using phased arrays

    A preliminary study on the induction of dioestrous ovulation in the mare – a possible method for inducing prolonged luteal phase

    Get PDF
    BACKGROUND: Strong oestrous symptoms in the mare can cause problems with racing, training and handling. Since long-acting progesterone treatment is not permitted in mares at competition (e.g. according to FEI rules), there is a need for methods to suppress unwanted cyclicity. Spontaneous dioestrous ovulations in the late luteal phase may cause a prolongation of the luteal phase in mares. METHODS: In this preliminary study, in an attempt to induce ovulation during the luteal phase, human chorionic gonadotropin (hCG) (3000 IU) was injected intramuscularly in four mares (experimental group) in the luteal phase when a dioestrous follicle ≥ 30 mm was detected. A fifth mare included in this group was not treated due to no detectable dioestrous follicles ≥ 30 mm. Four control mares were similarly injected with saline. The mares were followed with ultrasound for 72 hours post injection or until ovulation. Blood samples for progesterone analysis were obtained twice weekly for one month and thereafter once weekly for another two to four months. RESULTS: Three of the hCG-treated mares ovulated within 72 hours after treatment and developed prolonged luteal phases of 58, 68 and 82 days respectively. One treated mare never ovulated after the hCG injection and progesterone levels fell below 3 nmol/l nine days post treatment. Progesterone levels in the control mares were below 3 nmol/l within nine days after saline injection, except for one mare, which developed a spontaneously prolonged luteal phase of 72 days. CONCLUSION: HCG treatment may be a method to induce prolonged luteal phases in the mare provided there is a dioestrous follicle ≥ 30 mm that ovulates post-treatment. However, the method needs to be tested on a larger number of mares to be able to draw conclusions regarding its effectiveness

    Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor

    Get PDF
    Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor
    • …
    corecore