7,758 research outputs found

    Chern-Simons--Antoniadis-Savvidy forms and standard supergravity

    Full text link
    In the context of the so called the Chern--Simons--Antoniadis--Savvidy (ChSAS) forms, we use the methods for FDA decomposition in 1-forms to construct a four-dimensional ChSAS supergravity action for the Maxwell superalgebra. On the another hand, we use the Extended Cartan Homotopy Formula to find a method that allows the separation of the ChSAS action into bulk and boundary contributions and permits the splitting of the bulk Lagrangian into pieces that reflect the particular subspace structure of the gauge algebra.Comment: 14 page

    Generalized Galilean Algebras and Newtonian Gravity

    Get PDF
    The non-relativistic versions of the generalized Poincar\'{e} algebras and generalized AdSAdS-Lorentz algebras are obtained. This non-relativistic algebras are called, generalized Galilean algebras type I and type II and denoted by GBn\mathcal{G}\mathfrak{B}_{n} and GLn\mathcal{G}\mathfrak{L}_{_{n}} respectively. Using a generalized In\"{o}n\"{u}--Wigner contraction procedure we find that the generalized Galilean algebras type I can be obtained from the generalized Galilean algebras type II. The SS-expansion procedure allows us to find the GB5\mathcal{G}\mathfrak{B}_{_{5}} algebra from the Newton--Hooke algebra with central extension. The procedure developed in Ref. \cite{newton} allow us to show that the non-relativistic limit of the five dimensional Einstein--Chern--Simons gravity is given by a modified version of the Poisson equation. The modification could be compatible with the effects of Dark Matter, which leads us to think that Dark Matter can be interpreted as a non-relativistic limit of Dark Energy.Comment: 16 pages, no figures in 755 (2016) 433-43

    Spectroscopy of blue horizontal branch stars in NGC 6656 (M22)

    Full text link
    Recent investigations revealed very peculiar properties of blue horizontal branch (HB) stars in \omega Centauri, which show anomalously low surface gravity and mass compared to other clusters and to theoretical models. \omega Centauri, however, is a very unusual object, hosting a complex mix of multiple stellar populations with different metallicity and chemical abundances. We measured the fundamental parameters (temperature, gravity, and surface helium abundance) of a sample of 71 blue HB stars in M22, with the aim of clarifying if the peculiar results found in \omega Cen are unique to this cluster. M22 also hosts multiple sub-populations of stars with a spread in metallicity, analogous to \omega Cen. The stellar parameters were measured on low-resolution spectra fitting the Balmer and helium lines with a grid of synthetic spectra. From these parameters, the mass and reddening were estimated. Our results on the gravities and masses agree well with theoretical expectations, matching the previous measurements in three "normal" clusters. The anomalies found in \omega Cen are not observed among our stars. A mild mass underestimate is found for stars hotter than 14\,000 K, but an exact analogy with \omega Cen cannot be drawn. We measured the reddening in the direction of M22 with two independent methods, finding E(B-V)=0.35 \pm 0.02 mag, with semi-amplitude of the maximum variation \Delta(E(B-V))=0.06 mag, and an rms intrinsic dispersion of \sigma(E(B-V))=0.03 mag.Comment: 11 pages, 9 Postscript figure

    Correlations in the QPO Frequencies of Low Mass X-Ray Binaries and the Relativistic Precession Model

    Full text link
    A remarkable correlation between the centroid frequencies of quasi periodic oscillations, QPOs, (or peaked noise components) from low mass X-ray binaries, has been recently discovered by Psaltis, Belloni and van der Klis (1999). This correlation extends over nearly 3 decades in frequency and encompasses both neutron star and black hole candidate systems. We discuss this result in the light of the relativistic precession model, which has been proposed to interpret the kHz QPOs as well as some of the lower frequency QPOs of neutron star low mass X-ray binaries of the Atoll and Z classes. Unlike other models the relativistic precession model does not require the compact object to be a neutron star and can be applied to black hole candidates as well. We show that the predictions of the relativistic precession model match both the value and dependence of the correlation to a very good accuracy without resorting to additional assumptions.Comment: To appear in ApJ Letters. AASTEX Latex v. 5.0, 1 figure not include
    • …
    corecore