315 research outputs found

    Black Hole - Neutron Star Mergers as Central Engines of Gamma-Ray Bursts

    Get PDF
    Hydrodynamic simulations of the merger of stellar mass black hole - neutron star binaries (BH/NS) are compared with mergers of binary neutron stars (NS/NS). The simulations are Newtonian, but take into account the emission and backreaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star to black hole mass ratios the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is already distroyed during its first approach. A gas mass between about 0.3 and about 0.7 solar masses is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several 10^{53} erg/s during an estimated accretion time scale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into electron-positron pairs with efficiencies of 1-3% percent and rates of up to 2*10^{52} erg/s, thus depositing an energy of up to 10^{51} erg above the poles of the black hole in a region which contains less than 10^{-5} solar masses of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities of up to several 10^{53} erg/s for burst durations of approximately 0.1-1 s, if the gamma emission is collimated in two moderately focussed jets in a fraction of about 1/100-1/10 of the sky.Comment: 8 pages, LaTex, 4 postscript figures, 2 tables. ApJ Letters, accepted; revised and shortened version, Fig. 2 change

    Numerical Models of Binary Neutron Star System Mergers. I.: Numerical Methods and Equilibrium Data for Newtonian Models

    Get PDF
    The numerical modeling of binary neutron star mergers has become a subject of much interest in recent years. While a full and accurate model of this phenomenon would require the evolution of the equations of relativistic hydrodynamics along with the Einstein field equations, a qualitative study of the early stages on inspiral can be accomplished by either Newtonian or post-Newtonian models, which are more tractable. In this paper we offer a comparison of results from both rotating and non-rotating (inertial) frame Newtonian calculations. We find that the rotating frame calculations offer significantly improved accuracy as compared with the inertial frame models. Furthermore, we show that inertial frame models exhibit significant and erroneous angular momentum loss during the simulations that leads to an unphysical inspiral of the two neutron stars. We also examine the dependence of the models on initial conditions by considering initial configurations that consist of spherical neutron stars as well as stars that are in equilibrium and which are tidally distorted. We compare our models those of Rasio & Shapiro (1992,1994a) and New & Tohline (1997). Finally, we investigate the use of the isolated star approximation for the construction of initial data.Comment: 32 pages, 19 gif figures, manuscript with postscript figures available at http://www.astro.sunysb.edu/dswesty/docs/nspap1.p

    Three-dimensional simulations of non-stationary accretion by remnant black holes of compact object mergers

    Full text link
    (abridged) Three-dimensional hydrodynamic simulations with an Eulerian PPM code are presented for the time-dependent evolution of accretion tori around nonrotating and rotating stellar-mass black holes (BHs), using a pseudo-Newtonian gravitational potential to approximate the effects of general relativity. The initial configurations are assumed to be remnants of binary neutron star (NS) or NS+BH mergers and consist of a 4 solar mass BH with varied spin, girded by a torus with a mass between 0.01 and 0.2 solar masses. The evolution of tori without and with physical shear viscosity is simulated, using a realistic equation of state and following the energy loss and lepton number change due to neutrino emission by a neutrino-trapping scheme. The time-dependent efficiency of converting rest-mass energy to neutrinos is found to reach 10 percent, the efficiency of converting neutrino energy into a pair-photon fireball by neutrino annihilation can reach several percent. The rate of the latter process declines with time much less steeply than the total neutrino luminosity, because the ongoing protonization of the torus ensures a rather stable product of neutrino and antineutrino luminosities. The neutrino emission increases steeply with higher viscosity, larger torus mass, and larger BH spin in corotation with the torus. For rotation rates as expected for post-merger BHs (a > 0.5) and reasonable values of the alpha viscosity (alpha ~ 0.1), the considered tori release sufficient energy in neutrinos to account for the energetics of the well-localized short gamma-ray bursts recently detected by Hete and Swift, if collimation is invoked as predicted by hydrodynamic jet simulations.Comment: 23 pages, 15 figures (high resolution available upon request), accepted by Astron. Astrophys. Significantly shortened with respect to first versio

    Vacuum discharge as a possible source of gamma-ray bursts

    Get PDF
    We propose that spontaneous particle--anti-particle pair creations from the discharged vacuum caused by the strong interactions in dense matter are major sources of γ\gamma-ray bursts. Two neutron star collisions or black hole-neutron star mergers at cosmological distance could produce a compact object with its density exceeding the critical density for pair creations. The emitted anti-particles annihilate with corresponding particles at the ambient medium. This releases a large amount of energy. We discuss the spontaneous ppˉp\bar{p} pair creations within two neutron star collision and estimate the exploded energy from ppˉp\bar{p} annihilation processes. The total energy could be around 1051105310^{51} - 10^{53} erg depending on the impact parameter of colliding neutron stars. This value fits well into the range of the initial energy of the most energetic γ\gamma-ray bursts.Comment: 12 pages, Latex, 2 figures included; replaced by the revised version, Int. J. Mod. Phys. E in pres

    Post Newtonian SPH

    Get PDF
    We introduce an adaptation of the well known Tree+SPH numerical scheme to Post Newtonian (PN) hydrodynamics and gravity. Our code solves the (0+1+2.5)PN equations. These equations include Newtonian hydrodynamics and gravity (0PN), the first order relativistic corrections to those (1PN) and the lowest order gravitational radiation terms (2.5PN). We test various aspects of our code using analytically solvable test problems. We then proceed to study the 1PN effects on binary neutron star coalescence by comparing calculations with and without the 1PN terms. We find that the effect of the 1PN terms is rather small. The largest effect arises with a stiff equation of state for which the maximum rest mass density increases. This could induce black hole formation. The gravitational wave luminosity is also affected.Comment: 28 pages, 13 figures, revised version published in Ap

    Helium Star/Black Hole Mergers: a New Gamma-Ray Burst Model

    Full text link
    We present a model for gamma-ray bursts (GRB's) in which a stellar mass black hole acquires a massive accretion disk by merging with the helium core of its red giant companion. The black hole enters the helium core after it, or its neutron star progenitor, first experiences a common envelope phase that carries it inwards through the hydrogen envelope. Accretion of the last several solar masses of helium occurs on a time scale of roughly a minute and provides a neutrino luminosity of approximately 10^51 - 10^52 erg/s. Neutrino annihilation, 0.01% to 0.1% efficient, along the rotational axis then gives a baryon loaded fireball of electron-positron pairs and radiation (about 1050^{50} erg total) whose beaming and relativistic interaction with circumstellar material makes the GRB (e.g., Rees & Meszaros 1992). The useful energy can be greatly increased if energy can be extracted from the rotational energy of the black hole by magnetic interaction with the disk. Such events should occur at a rate comparable to that of merging neutron stars and black hole neutron star pairs and may be responsible for long complex GRB's, but not short hard ones.Comment: 11 pages total, 2 Figures - altered and revised for ApJ letters, accepte

    Non-stationary hyperaccretion of stellar-mass black holes in three dimensions: Torus evolution and neutrino emission

    Full text link
    We present three-dimensional hydrodynamic simulations of the evolution of selfgravitating, thick accretion discs around hyperaccreting stellar-mass black holes. The black hole-torus systems are considered to be remnants of compact object mergers, in which case the disc is not fed by an external mass reservoir and the accretion is non-stationary. Our models take into account viscous dissipation, described by an alpha-law, a detailed equation of state for the disc gas, and an approximate treatment of general relativistic effects on the disc structure by using a pseudo-Newtonian potential for the black hole including its possible rotation and spin-up during accretion. Magnetic fields are ignored. The neutrino emission of the hot disc is treated by a neutrino-trapping scheme, and the neutrino-antineutrino annihilation near the disc is evaluated in a post-processing step. Our simulations show that the neutrino emission and energy deposition by neutrino-antineutrino annihilation increase sensitively with the disc mass, with the black hole spin in case of a disc in corotation, and in particular with the alpha-viscosity. We find that for sufficiently large alpha-viscosity neutrino-antineutrino annihilation can be a viable energy source for gamma-ray bursts.Comment: 6 pages, 4 figures (1 colored); accepted by MNRAS, referee's suggestions incorporated; high-resolution pictures can be obtained upon reques

    Newtonian Hydrodynamics of the Coalescence of Black Holes with Neutron Stars I: Tidally locked binaries with a stiff equation of state

    Get PDF
    We present a detailed study of the hydrodynamical interactions in a Newtonian black hole-neutron star binary during the last stages of inspiral. We consider close binaries which are tidally locked, use a stiff equation of state (with an adiabatic index Gamma=3) throughout, and explore the effect of different initial mass ratios on the evolution of the system. We calculate the gravitational radiation signal in the quadrupole approximation. Our calculations are carried out using a Smooth Particle Hydrodynamics (SPH) code.Comment: Replaces previous version which had figures separate from the text of the paper. Now 47 pages long with 19 embedded figures (the figures are the same, they were renumbered) Uses aaspp4.st

    Can Naked Singularities Yield Gamma Ray Bursts?

    Get PDF
    Gamma-ray bursts are believed to be the most luminous objects in the Universe. There has been some suggestion that these arise from quantum processes around naked singularities. The main problem with this suggestion is that all known examples of naked singularities are massless and hence there is effectively no source of energy. It is argued that a globally naked singularity coupled with quantum processes operating within a distance of the order of Planck length of the singularity will probably yield energy burst of the order of M_pc^2\approx2\times 10^{16} ergs, where M_p is the Planck mass.Comment: 4 pages, TeX, no figure
    corecore