799 research outputs found

    Babies Jessica, Richard, and Emily: The Need for Legislative Reform of Adoption Laws

    Get PDF

    Babies Jessica, Richard, and Emily: The Need for Legislative Reform of Adoption Laws

    Get PDF

    Local Radiotherapy Intensification for Locally Advanced Non–small-cell Lung Cancer – A Call to Arms

    Get PDF
    Chemoradiotherapy, the standard of care for locally advanced non–small-cell lung cancer (NSCLC), often fails to eradicate all known disease. Despite advances in chemotherapeutic regimens, locally advanced NSCLC remains a difficult disease to treat, and locoregional failure remains common. Improved radiographic detection can identify patients at significant risk of locoregional failure after definitive treatment, and newer methods of escalating locoregional treatment may allow for improvements in locoregional control with acceptable toxicity. This review addresses critical issues in escalating local therapy, focusing on using serial positron emission tomography-computed tomography to select high-risk patients and employing stereotactic radiotherapy to intensify treatment. We further propose a clinical trial concept that incorporates the review's findings

    Identifying risk factors for healthcare-associated infections from electronic medical record home address data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Residential address is a common element in patient electronic medical records. Guidelines from the U.S. Centers for Disease Control and Prevention specify that residence in a nursing home, skilled nursing facility, or hospice within a year prior to a positive culture date is among the criteria for differentiating healthcare-acquired from community-acquired methicillin-resistant <it>Staphylococcus aureus </it>(MRSA) infections. Residential addresses may be useful for identifying patients residing in healthcare-associated settings, but methods for categorizing residence type based on electronic medical records have not been widely documented. The aim of this study was to develop a process to assist in differentiating healthcare-associated from community-associated MRSA infections by analyzing patient addresses to determine if residence reported at the time of positive culture was associated with a healthcare facility or other institutional location.</p> <p>Results</p> <p>We identified 1,232 of the patients (8.24% of the sample) with positive cultures as probable cases of healthcare-associated MRSA based on residential addresses contained in electronic medical records. Combining manual review with linking to institutional address databases improved geocoding rates from 11,870 records (79.37%) to 12,549 records (83.91%). Standardization of patient home address through geocoding increased the number of matches to institutional facilities from 545 (3.64%) to 1,379 (9.22%).</p> <p>Conclusions</p> <p>Linking patient home address data from electronic medical records to institutional residential databases provides useful information for epidemiologic researchers, infection control practitioners, and clinicians. This information, coupled with other clinical and laboratory data, can be used to inform differentiation of healthcare-acquired from community-acquired infections. The process presented should be extensible with little or no added data costs.</p

    Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO<sub>3</sub> and LiTaO<sub>3</sub>

    No full text
    The shapes of isolated domains produced by application of the uniform external electric field in different experimental conditions were investigated experimentally in single crystalline lithium niobate LiNbO3 and lithium tantalate LiTaO3. The study of the domain kinetics by computer simulation and experimentally by polarization reversal of the model structure using two-dimensional regular electrode pattern confirms applicability of the kinetic approach to explanation of the experimentally observed evolution of the domain shape and geometry of the domain structure. It has been shown that the fast domain walls strictly oriented along X directions appear after domain merging

    High Spectral Resolution Measurement of the Sunyaev–Zel'dovich Effect Null with Z-Spec

    Get PDF
    The Sunyaev-Zel'dovich (SZ) effect spectrum crosses through a null where ΔT_CMB = 0 near ν_0 = 217 GHz. In a cluster of galaxies, ν0 can be shifted from the canonical thermal SZ effect value by corrections to the SZ effect scattering due to the properties of the inter-cluster medium. We have measured the SZ effect in the hot galaxy cluster RX J 1347.5 – 1145 with Z-Spec, an R ~ 300 grating spectrometer sensitive between 185 and 305 GHz. These data comprise a high spectral resolution measurement around the null of the SZ effect and clearly exhibit the transition from negative to positive ΔT_CMB over the Z-Spec band. The SZ null position is measured to be ν_0 = 225.8 ± 2.5(stat.) ± 1.2(sys.) GHz, which differs from the canonical null frequency by 3.0σ and is evidence for modifications to the canonical thermal SZ effect shape. Assuming the measured shift in ν0 is due only to relativistic corrections to the SZ spectrum, we place the limit kT_e = 17.1 ± 5.3 keV from the zero-point measurement alone. By simulating the response of the instrument to the sky, we are able to generate likelihood functions in {y_0, T_e, v_pec} space. For v_pec = 0 km s^(–1), we measure the best-fitting SZ model to be y_0 = 4.6^(+0.6)_(–0.9) × 10^(–4), T_e, 0 = 15.2^(+12)_(–7.4) keV. When v pec is allowed to vary, a most probable value of v_pec = + 450 ± 810 km s^(–1) is found

    Nanoscale piezoelectric response across a single antiparallel ferroelectric domain wall

    Full text link
    Surprising asymmetry in the local electromechanical response across a single antiparallel ferroelectric domain wall is reported. Piezoelectric force microscopy is used to investigate both the in-plane and out-of- plane electromechanical signals around domain walls in congruent and near-stoichiometric lithium niobate. The observed asymmetry is shown to have a strong correlation to crystal stoichiometry, suggesting defect-domain wall interactions. A defect-dipole model is proposed. Finite element method is used to simulate the electromechanical processes at the wall and reconstruct the images. For the near-stoichiometric composition, good agreement is found in both form and magnitude. Some discrepancy remains between the experimental and modeling widths of the imaged effects across a wall. This is analyzed from the perspective of possible electrostatic contributions to the imaging process, as well as local changes in the material properties in the vicinity of the wall
    corecore