5,666 research outputs found

    Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates

    Get PDF
    Controlled routes to prepare polyesters and polycarbonates are of interest due to the widespread application of these materials and the opportunities provided to prepare new copolymers. Furthermore, ring-opening copolymerization may enable new poly(ester–carbonate) materials to be prepared which are inaccessible using alternative polymerizations. This review highlights recent advances in the ring-opening copolymerization catalysis, using epoxides coupled with anhydrides or CO2, to produce polyesters and polycarbonates. In particular, the structures and performances of various homogeneous catalysts are presented for the epoxide–anhydride copolymerization. The properties of the resultant polyesters and polycarbonates are presented and future opportunities highlighted for developments of both the materials and catalysts

    Universal properties of many-body delocalization transitions

    Full text link
    We study the dynamical melting of "hot" one-dimensional many-body localized systems. As disorder is weakened below a critical value these non-thermal quantum glasses melt via a continuous dynamical phase transition into classical thermal liquids. By accounting for collective resonant tunneling processes, we derive and numerically solve an effective model for such quantum-to-classical transitions and compute their universal critical properties. Notably, the classical thermal liquid exhibits a broad regime of anomalously slow sub-diffusive equilibration dynamics and energy transport. The subdiffusive regime is characterized by a continuously evolving dynamical critical exponent that diverges with a universal power at the transition. Our approach elucidates the universal long-distance, low-energy scaling structure of many-body delocalization transitions in one dimension, in a way that is transparently connected to the underlying microscopic physics.Comment: 12 pages, 6 figures; major changes from v1, including a modified approach and new emphasis on conventional MBL systems rather than their critical variant

    New Constraints on Quasar Evolution: Broad Line Velocity Shifts over 1.5z7.51.5\lesssim z\lesssim 7.5

    Full text link
    We present the results of a model-independent investigation of the rest-frame UV spectra from a comprehensive sample of 394394 quasars in the redshift range 1.5z7.51.5\leq z \leq 7.5. We fit the main Broad Emission Lines (BELs) in the rest-frame range 1280A˚λ3000A˚1280 \text{\AA} \leq \lambda \leq 3000 \text{\AA} (O I, C II, Si IV, C III, C IV and Mg II) with a lightly-supervised spline fitting technique. Redshifts are derived from the peaks of each fitted BEL and used to compute relative velocity shifts. We show that our method gives unbiased velocity shifts and is insensitive to spectral resolution and instrumental parameters. It is found that the average blueshift of the \cfour\, line with respect to several low-ionisation lines in luminosity-matched samples does not significantly evolve over 1.5z61.5\gtrsim z\gtrsim6. However, the average blueshift increases significantly by a factor 2.5\sim 2.5 at z6z\gtrsim 6. We propose that this redshift evolution can be explained by \cfour\, winds launched perpendicularly to an accretion disk with increased torus opacity at high-redshift, coupled with a potential orientation-driven selection bias. Our results open new exciting avenues of investigation into young quasars in the reionisation epoch.Comment: Accepted for publication in MNRAS. 14 pages, 14 Figures, 2 Tables. Revised version to match the accepted one - results unchanged. Supplementary material for appendix A available at : www.homepages.ucl.ac.uk/~ucapram/QSOBEL_shifts_supp_material.tar.g

    Photonic crystal-driven spectral concentration for upconversion photovoltaics

    Get PDF
    International audienceThe main challenge for applying upconversion (UC) to silicon photovoltaics is the limited amount of solar energy harvested directly via erbium-based upconverter materials (24.5 W m(-2)). This could be increased up to 87.7 W m(-2) via spectral concentration. Due to the nonlinear behavior of UC, this could increase the best UC emission by a factor 13. In this paper, the combined use of quantum dots (QDs)for luminescent down-shiftingand photonic crystals (PCs)for reshaping the emissionto achieve spectral concentration is shown. This implies dealing with the coupling of colloidal QDs and PC at the high-density regime, where the modes are shifted and broadened. In the first fabricated all-optical devices, the spectral concentration rises by 67%, the QD emission that matches the absorption of erbium-based upconverters increases by 158%, and the vertical emission experiences a 680% enhancement. Remarkably, the PC redshifts the overall emission of the QDs, which could be used to develop systems with low reabsorption losses. In light of this, spectral concentration should be regarded as one of the main strategies for UC photovoltaics

    Systematic uncertainties in the determination of the local dark matter density

    Full text link
    A precise determination of the local dark matter density and an accurate control over the corresponding uncertainties are of paramount importance for Dark Matter (DM) searches. Using very recent high-resolution numerical simulations of a Milky Way like object, we study the systematic uncertainties that affect the determination of the local dark matter density based on dynamical measurements in the Galaxy. In particular, extracting from the simulation with baryons the orientation of the Galactic stellar disk with respect to the DM distribution, we study the DM density for an observer located at \sim8 kpc from the Galactic center {\it on the stellar disk}, ρ0\rho_0. This quantity is found to be always larger than the average density in a spherical shell of same radius ρˉ0\bar{\rho}_0, which is the quantity inferred from dynamical measurements in the Galaxy, and to vary in the range ρ0/ρˉ0=1.011.41\rho_0/\bar{\rho}_0=1.01-1.41. This suggests that the actual dark matter density in the solar neighbourhood is on average 21\% larger than the value inferred from most dynamical measurements, and that the associated systematic errors are larger than the statistical errors recently discussed in the literature.Comment: 6 pages, 3 figures, matches published versio
    corecore