1,036 research outputs found

    Emotions and Digital Well-being. The rationalistic bias of social media design in online deliberations

    Get PDF
    In this chapter we argue that emotions are mediated in an incomplete way in online social media because of the heavy reliance on textual messages which fosters a rationalistic bias and an inclination towards less nuanced emotional expressions. This incompleteness can happen either by obscuring emotions, showing less than the original intensity, misinterpreting emotions, or eliciting emotions without feedback and context. Online interactions and deliberations tend to contribute rather than overcome stalemates and informational bubbles, partially due to prevalence of anti-social emotions. It is tempting to see emotions as being the cause of the problem of online verbal aggression and bullying. However, we argue that social media are actually designed in a predominantly rationalistic way, because of the reliance on text-based communication, thereby filtering out social emotions and leaving space for easily expressed antisocial emotions. Based on research on emotions that sees these as key ingredients to moral interaction and deliberation, as well as on research on text-based versus non-verbal communication, we propose a richer understanding of emotions, requiring different designs of online deliberation platforms. We propose that such designs should move from text-centred designs and should find ways to incorporate the complete expression of the full range of human emotions so that these can play a constructive role in online deliberations

    PPM-Extended (PPMX) - a catalogue of positions and proper motions

    Full text link
    Aims: We build a catalogue PPM-Extended (PPMX) on the ICRS system which is complete down to a well-defined limiting magnitude and contains the best presently available proper motions to be suited for kinematical studies in the Galaxy. Methods: We perform a rigorous weighted least-squares adjustment of individual observations, spread over more than a century, to determine mean positions and proper motions. The stellar content of PPMX is taken from GSC 1.2 supplemented by catalogues like ARIHIP, PPM and Tycho-2 at the bright end. All observations have been weighted according to their individual accuracy. The catalogue has been screened towards rejecting false entries in the various source catalogues. Results: PPM-Extended (PPMX) is a catalogue of 18,088,920 stars containing astrometric and photometric information. Its limiting magnitude is about 15.2 in the GSC photometric system. PPMX consists of three parts: a) a survey complete down to R_U = 12.8 in the magnitude system of UCAC2; b) additional stars of high-precision proper motions, and c) all other stars from GSC 1.2 identified in 2MASS. The typical accuracy of the proper motions is 2mas/y for 66 percent of the survey stars (a) and the high-precision stars (b), and about 10 mas/y for all other stars. PPMX contains photometric information from ASCC-2.5 and 2MASS.Comment: 9 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    The PPMXL catalog of positions and proper motions on the ICRS. Combining USNO-B1.0 and 2MASS

    Full text link
    USNO-B1.0 and 2MASS are the most widely used full-sky surveys. However, 2MASS has no proper motions at all, and USNO-B1.0 published only relative, not absolute (i.e. on ICRS) proper motions. We performed a new determination of mean positions and proper motions on the ICRS system by combining USNO-B1.0 and 2MASS astrometry. This catalog is called PPMXL {VO-access to the catalog is possible via http://vo.uni-hd.de/ppmxl}, and it aims to be complete from the brightest stars down to about V≈20V \approx 20 full-sky. PPMXL contains about 900 million objects, some 410 million with 2MASS photometry, and is the largest collection of ICRS proper motions at present. As representative for the ICRS we chose PPMX. The recently released UCAC3 could not be used because we found plate-dependent distortions in its proper motion system north of -20∘^\circ declination. UCAC3 served as an intermediate system for δ≤−20∘\delta \leq -20^\circ. The resulting typical individual mean errors of the proper motions range from 4 mas/y to more than 10 mas/y depending on observational history. The mean errors of positions at epoch 2000.0 are 80 to 120 mas, if 2MASS astrometry could be used, 150 to 300 mas else. We also give correction tables to convert USNO-B1.0 observations of e.g. minor planets to the ICRS system.Comment: 9 pages, 9 figure
    • …
    corecore