436 research outputs found

    Modelling of soot formation in laminar diffusion flames using a comprehensive CFD-PBE model with detailed gas-phase chemistry

    Get PDF
    A discretised population balance equation (PBE) is coupled with an in-house computational fluid dynamics (CFD) code in order to model soot formation in laminar diffusion flames. The unsteady Navier–Stokes, species and enthalpy transport equations and the spatially-distributed discretised PBE for the soot particles are solved in a coupled manner, together with comprehensive gas-phase chemistry and an optically thin radiation model, thus yielding the complete particle size distribution of the soot particles. Nucleation, surface growth and oxidation are incorporated into the PBE using an acetylene-based soot model. The potential of the proposed methodology is investigated by comparing with experimental results from the Santoro jet burner [Santoro, Semerjian and Dobbins, Soot particle measurements in diffusion flames, Combustion and Flame, Vol. 51 (1983), pp. 203–218; Santoro, Yeh, Horvath and Semerjian, The transport and growth of soot particles in laminar diffusion flames, Combustion Science and Technology, Vol. 53 (1987), pp. 89–115] for three laminar axisymmetric non-premixed ethylene flames: a non-smoking, an incipient smoking and a smoking flame. Overall, good agreement is observed between the numerical and the experimental results

    Population balance modelling of polydispersed particles in reactive flows

    Get PDF
    Polydispersed particles in reactive flows is a wide subject area encompassing a range of dispersed flows with particles, droplets or bubbles that are created, transported and possibly interact within a reactive flow environment - typical examples include soot formation, aerosols, precipitation and spray combustion. One way to treat such problems is to employ as a starting point the Newtonian equations of motion written in a Lagrangian framework for each individual particle and either solve them directly or derive probabilistic equations for the particle positions (in the case of turbulent flow). Another way is inherently statistical and begins by postulating a distribution of particles over the distributed properties, as well as space and time, the transport equation for this distribution being the core of this approach. This transport equation, usually referred to as population balance equation (PBE) or general dynamic equation (GDE), was initially developed and investigated mainly in the context of spatially homogeneous systems. In the recent years, a growth of research activity has seen this approach being applied to a variety of flow problems such as sooting flames and turbulent precipitation, but significant issues regarding its appropriate coupling with CFD pertain, especially in the case of turbulent flow. The objective of this review is to examine this body of research from a unified perspective, the potential and limits of the PBE approach to flow problems, its links with Lagrangian and multi-fluid approaches and the numerical methods employed for its solution. Particular emphasis is given to turbulent flows, where the extension of the PBE approach is met with challenging issues. Finally, applications including reactive precipitation, soot formation, nanoparticle synthesis, sprays, bubbles and coal burning are being reviewed from the PBE perspective. It is shown that population balance methods have been applied to these fields in varying degrees of detail, and future prospects are discussed

    A methodology for the integration of stiff chemical kinetics on GPUs

    Get PDF
    Numerical schemes for reacting flows typically invoke the method of fractional steps in order to isolate the chemical kinetics model from diffusion/convection phenomena. Here, the reaction fractional step requires the solution of a collection of independent ODE systems which may be severely stiff. Recently, researchers have begun to explore the highly parallel structure of graphics processing units (GPUs) in order to accelerate integration schemes for these ODE systems. However, much of the existing work concentrates on explicit integration algorithms which may fall short in the presence of stiffness. In this light, we have carefully reimplemented in OpenCL C the Fortran 77 program of the 3-stage/5th order implicit Runge–Kutta method Radau5 by Hairer and Wanner (1991) and tested it extensively in the context of a transient equilibrium scheme for the flamelet model. Our implementation can easily be integrated with any existing reactive flow software in order to solve the reaction fractional step on an OpenCL-enabled GPU. Moreover, it is suited for any Chemkin-format reaction mechanism with ≲200≲200 species without incurring a loss in occupancy and it reaches its limit speedup (which is largely independent of the mechanism size) at a small problem size (≈500 ODE systems). In view of memory constraints, we include an optimized scheme for splitting the ODE systems across several kernel invocations and overlapping the kernel execution with data transfers. An in-depth evaluation is based upon runtime measurements of the CPU and the GPU implementation on a user level and a high-end CPU/GPU for an increasing number of ODE systems, reduced and detailed reaction mechanisms and a range of time step sizes

    Non-linear inflationary perturbations

    Full text link
    We present a method by which cosmological perturbations can be quantitatively studied in single and multi-field inflationary models beyond linear perturbation theory. A non-linear generalization of the gauge-invariant Sasaki-Mukhanov variables is used in a long-wavelength approximation. These generalized variables remain invariant under time slicing changes on long wavelengths. The equations they obey are relatively simple and can be formulated for a number of time slicing choices. Initial conditions are set after horizon crossing and the subsequent evolution is fully non-linear. We briefly discuss how these methods can be implemented numerically in the study of non-Gaussian signatures from specific inflationary models.Comment: 10 pages, replaced to match JCAP versio

    Quantitative bispectra from multifield inflation

    Full text link
    After simplifying and improving the non-Gaussian formalism we developed in previous work, we derive a quantitative expression for the three-point correlator (bispectrum) of the curvature perturbation in general multiple-field inflation models. Our result describes the evolution of non-Gaussianity on superhorizon scales caused by the nonlinear influence of isocurvature perturbations on the adiabatic perturbation during inflation. We then study a simple quadratic two-field potential and find that when slow roll breaks down and the field trajectory changes direction in field space, the non-Gaussianity can become large. However, for the simple models studied to date, the magnitude of this non-Gaussianity decays away after the isocurvature mode is converted into the adiabatic mode.Comment: 7 pages, 1 figure. v4: Added remarks on momentum dependence, minor textual changes, matches published versio

    Simple route to non-Gaussianity in inflation

    Full text link
    We present a simple way to calculate non-Gaussianity in inflation using fully non-linear equations on long wavelengths with stochastic sources to take into account the short-wavelength quantum fluctuations. Our formalism includes both scalar metric and matter perturbations, combining them into variables which are invariant under changes of time slicing in the long-wavelength limit. We illustrate this method with a perturbative calculation in the single-field slow-roll case. We also introduce a convenient choice of variables to graphically present the full momentum dependence of the three-point correlator.Comment: 6 pages, 2 figures. v2: Updated formalism to version described in astro-ph/0504508, leading to dropping of one unnecessary approximation. Final results not significantly changed. Extended discussion of calculation and added graphical presentation of full momentum dependence. References corrected and added. v3: Final version, only small textual change

    Analysis of wall mass transfer in a turbulent pipe flow combining extended POD and FIK identity

    Get PDF
    We combine extended proper orthogonal decomposition (EPOD) together with the Fukagata-Iwamoto-Kasagi (FIK) identity to quantify the role of individual coherent structures on the wall mass transfer in a turbulent pipe flow. Direct numerical simulation at a Reynolds number of 5300 (based on bulk velocity) is performed with the passive scalar released at the pipe inlet. The proper orthogonal decomposition (POD) eigenvalues show that the scalar field can be described by a more compact set of modes compared to the velocity field, and that these modes are skewed towards higher azimuthal wave numbers. POD modes for the scalar and EPOD modes for the velocity are visualized in the cross-stream plane to infer the capacity of each mode to transport scalar to and from the wall. A form of the FIK identity is derived for the wall mass transfer coefficient (Sherwood number, Sh) and employed to separate the contributions of the mean and fluctuating velocity and scalar fields. The FIK decomposition shows that the turbulent velocity/scalar correlations account for up to 65.8% of the total Sh. The contribution of each POD and EPOD mode to the Sh number is also computed; it is found that, using azimuthal wave numbers m=1–15 and POD modes n=1–10, it is possible to reconstruct 49% of the turbulent component of Sh, with the velocity modes containing only 31% of the turbulent kinetic energy. Quadrant analysis shows that these modes are related to ejection and sweep events near the wall, with the ejection events dominating

    Reconstruction of large scale flow structures in a stirred tank from limited sensor data

    Get PDF
    We combine reduced order modelling and system identification to reconstruct the temporal evolution of large scale vortical structures behind the blades of a Rushton impeller. We performed Direct Numerical Simulations at Reynolds number 600 and employed proper orthogonal decomposition (POD) to extract the dominant modes and their temporal coefficients. We then applied the identification algorithm, N4SID, to construct an estimator that captures the relation between the velocity signals at sensor points (input) and the POD coefficients (output). We show that the first pair of modes can be very well reconstructed using the velocity time signal from even a single sensor point. A larger number of points improves accuracy and robustness, and also leads to better reconstruction for the second pair of POD modes. Application of the estimator derived at Re=600 to the flows at Re=500 and 700, shows that it is robust with respect to changes in operating conditions

    Effects of the electric field on soot formation in combustion: A coupled charged particle PBE-CFD framework

    Get PDF
    In this article, a coupled PBE-CFD framework has been proposed to study counterflow non-premixed flames and soot formation under an external electric field. This framework integrates the population balance equation (PBE) for nanoparticle dynamics into an in-house CFD solver for the multicomponent reactive flows. Different electric properties have been considered in this model. An ion mechanism used in both fuel-rich and fuel-lean combustion is combined with a detailed chemistry for neutral gaseous species and small-size aromatics to retain the full chemistry. In order to model soot particles carrying charges and the movement of the reacting fluid medium in the electric field, a second PBE for the production and transport of charges on soot particles is introduced for the first time and incorporated into the original PBE for the number density of particles. Also, the electric force for the gas mixture is included in the momentum equations. The electric drift velocities for ions and soot particles are also considered in the transport equations of ions and the PBE of soot particles, respectively. The simulations have shown that the presence of the electric field modifies the stagnation plane of the counterflow flames and reduces the soot formation in both rich-fuel and lean-fuel conditions in agreement with experimental observations. The application of the soot particle charging model, accompanied by a proper electric correction factor on the nanoparticle processes of nucleation and surface growth, significantly improves the stability of the flame structure. The introduction of the electric correction factor reveals that the suppression of soot formation in an electric field is mainly caused by the inhibited chemical reactions of the PAH nucleation and particle surface growth, which is more important than the electric drift of the charged particles. Reducing the critical size of the particle charging process enhances the electric drift of nascent soot, thus lessening its subsequent evolution

    Large non-Gaussianity in multiple-field inflation

    Full text link
    We investigate non-Gaussianity in general multiple-field inflation using the formalism we developed in earlier papers. We use a perturbative expansion of the non-linear equations to calculate the three-point correlator of the curvature perturbation analytically. We derive a general expression that involves only a time integral over background and linear perturbation quantities. We work out this expression explicitly for the two-field slow-roll case, and find that non-Gaussianity can be orders of magnitude larger than in the single-field case. In particular, the bispectrum divided by the square of the power spectrum can easily be of O(1-10), depending on the model. Our result also shows the explicit momentum dependence of the bispectrum. This conclusion of large non-Gaussianity is confirmed in a semi-analytic slow-roll investigation of a simple quadratic two-field model.Comment: 21 pages, 9 figures. v4: Minor textual changes to match published version. In addition, and superseding the published version, a small error in X and X-bar has been corrected; no significant changes to the final results. Note that an extended (no slow roll) numerical treatment superseding section V.D is available in astro-ph/051104
    • …
    corecore