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Abstract

We combine extended proper orthogonal decomposition (EPOD) together with the Fukagata-

Iwamoto-Kasagi (FIK) identity to quantify the role of individual coherent structures on the wall

mass transfer in a turbulent pipe flow. Direct numerical simulation (DNS) at a Reynolds number

of 5300 (based on bulk velocity) is performed with the passive scalar released at the pipe inlet. The

proper orthogonal decomposition (POD) eigenvalues show that the scalar field can be described by a

more compact set of modes compared to the velocity field, and that these modes are skewed towards

higher azimuthal wavenumbers. POD modes for the scalar and EPOD modes for the velocity are

visualized in the cross-stream plane to infer the capacity of each mode to transport scalar to and

from the wall. A form of the FIK identity is derived for the wall mass transfer coefficient (Sherwood

number, Sh) and employed to separate the contributions of the mean and fluctuating velocity and

scalar fields. The FIK decomposition shows that the turbulent velocity/scalar correlations account

for up to 65.8% of the total Sh. The contribution of each POD and EPOD mode to the Sh

number is also computed; it is found that, using azimuthal wavenumbers m = 1 − 15 and POD

modes n = 1 − 10, it is possible to reconstruct 49% of the turbulent component of Sh, with the

velocity modes containing only 31% of the turbulent kinetic energy. Quadrant analysis shows

that these modes are related to ejection and sweep events near the wall, with the ejection events

dominating.
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I. INTRODUCTION

Organized flow motions, or coherent structures, play an important role in momentum and

scalar transport in wall-bounded turbulent flows. These structures have different streamwise

and spanwise length scales and several types have been identified, for example near-wall

streaks, hairpin or horseshoe vortices, as well as large or very large scale motions (LSM or

VLSM), [1–4]. Understanding the relationship between these structures and scalar transport

can lead to better control and optimisation of heat and mass transfer to the walls of pipes and

channels. For this reason, many studies have investigated the role of coherent structures

on scalar transport, both experimentally and computationally; Refs. [5–12] constitute a

small sample from an extensive literature. These structures have also been analysed using

different types of modal decomposition techniques. For example, in Dawson et al. [13] and

Laskari et al. [14], resolvent analysis was used to analyse DNS, planar PIV and aero-optic

scalar and velocity measurements. In Mallor et al. [15], modal decomposition was employed

to analyse flow fields and heat transfer for wall-proximity square ribs, in order to educe

coherent structures and analyse their effect on the instantaneous wall heat flux.

In the present paper, we consider the turbulent flow inside a circular pipe and examine

the contribution of individual structures on the time-average mass transfer coefficient (Sh

number). We extract the structures using proper orthogonal decomposition (POD), a tech-

nique that decomposes the velocity field into a set of orthonormal modes, ranked in terms

of their turbulent kinetic energy [16, 17]. Pipe flows have previously been analysed with

POD using data from both experiments and numerical simulations. Duggleby et al. [18]

performed one of the first analyses using DNS data at Reτ = 150. Baltzer et. al. [19]

considered higher Reτ = 685 and found that LSM-like structures were aligned in a helical

pattern and suggested that these structures caused the formation of VLSM. A similar result

was also found in Hellstrom et al. [20], who used a dual-plane PIV setup to probe the flow

at a Reynolds number of 1.04 ·105. Lee et al. [21] analysed the spatial organization patterns

of LSMs and VLSMs, as well as their statistical properties. Abreu et al. [22] studied the

near-wall streaks in a turbulent pipe flow at Reτ = 180 and 550 using spectral POD (an ex-

tension of POD to the frequency domain) and resolvent analysis, and focused on comparing

the two methods.

All the aforementioned pipe flow studies have focused on the velocity field only. In the
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present work, our objective is to analyse the effect of the velocity field on a passive scalar.

Flow structures obtained from standard POD analysis are ranked with respect to their

kinetic energy, and are not necessarily the most effective in terms of scalar transport. The

extended proper orthogonal decomposition (EPOD) method, proposed in Ref. [23], is a

generalisation of the standard POD and more suitable for our purposes. This technique uses

the temporal basis from the decomposition of one variable (in our case, the scalar) in order

to decompose another synchronized variable (the velocity). EPOD has been used previously

to analyse correlated events, such as velocity in two different regions [24], pressure and

velocity fluctuations [25], temperature and velocity fluctuations in wall heated pipes [26],

passive scalars in swirling jets [27], and flame dynamics [28]. A related method, known as

cross proper orthogonal decomposition (CPOD), was recently proposed [29]. This method

decomposes a flow in terms of modes that are ranked according to the cross-correlation

they carry, for example Reynolds shear stresses or velocity-scalar correlation. In the present

paper, we use EPOD velocity modes that share the same temporal coefficients with the

scalar POD modes.

POD and EPOD analyse only the fluctuating components of the velocity and scalar fields.

For example, Mallor et al. [15] used POD to identify the fluctuating patterns of heat flux on

the plate. From the engineering perspective however, we are interested in the time-average

wall heat or mass transfer coefficients. To relate the fluctuating components (and thus flow

structures) to the time-average coefficient, an equation similar to the Fukagata-Iwamoto-

Kasagi (FIK) identity [30] is applied for the scalar. This identity was first derived as a

tool for investigating the contribution of Reynolds stress to the skin friction coefficient in

channel, pipe and flat boundary layer flows. Similar equations have since been derived to

analyse contributions to the Nusselt number in boundary layer and pipe flows [31–36]. In this

paper, the identity is applied for the Sherwood number Sh, the non-dimensional gradient of

concentration at the wall (equivalent to Nusselt number for mass transfer), and employed

to quantify the contribution of individual POD and EPOD modes to the time-average wall

mass transfer rate. Thus the coherent structures that have the biggest contribution to Sh

can be identified.

To the best of our knowledge, such an investigation has not been reported in the literature

before for scalar, but it is the type of analysis that can offer significant benefits. For example,

the understanding of the effect of different structures on the near-wall behaviour and in

3



particular the skin friction coefficient (the equivalent of Sh for momentum transfer) has

recently led to the design of actuation schemes for drag-reduction that offer net-power savings

even at high Reynolds numbers, see [37]. In the present paper, we apply the idea to a

relatively low Reynolds number, but the same approach can be applied to higher Reynolds

and Schmidt numbers (to study for example the effect of large scale structures that reside

on the log layer on heat/mass transfer coefficient). It is envisaged that the present analysis

can motivate schemes that optimise the transfer coefficient (either minimise or maximise,

depending on the application), in the same way this has been done for the skin friction

coefficient.

The article is structured as follows: the case examined, computational details, and vali-

dation of the DNS dataset are presented in section II. The following section III summarizes

the POD and EPOD methods. The description of the FIK identity and its application to

the dataset is detailed in section IV. The POD and EPOD eigenvalues, mode shapes, and

the individual contributions to wall transfer rate are presented and discussed in section V.

We conclude in section VI.

II. CASE EXAMINED, COMPUTATIONAL METHOD AND VALIDATION

We consider the turbulent flow inside a circular pipe with a passive scalar injected at the

inlet. The flow is assumed to be incompressible and the continuity, momentum and scalar

transport equations are written in Cartesian tensor notation as:

∂ui
∂xi

= 0, (1)

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

, (2)

∂c

∂t
+
∂cuj
∂xj

=
1

ReSc

∂2c

∂xj∂xj
, (3)

where ui is the instantaneous velocity in the i-th direction, p is the pressure, t is the time,

and c is the scalar concentration. The notation (x1, x2, x3) for the spatial coordinates is

used interchangeably with the notation (x, y, z), where z = x3 is the axial, i.e. streamwise,

direction. Due to rotational symmetry, it is also convenient to use polar coordinates (r, θ, z),

where (x, y) = (r cos θ, r sin θ). All variables are non-dimensionalised with the reference

quantities being the bulk velocity UB, the pipe diameter D, and the inlet concentration cI .
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The Reynolds number is defined as Re = UBD
ν

, where ν is the kinematic viscosity, and the

Schmidt number as Sc = ν
α

, where α is the scalar diffusivity. The mean (i.e. time-average)

and fluctuating quantities are denoted using an overbar and a prime, for example c and c′,

respectively.

We perform direct numerical simulations (DNS) of a fully developed turbulent flow in

a pipe of length L = 7.5D. The Reynolds number is Re = 5300, which corresponds to

Reτ = uτR
ν

= 180, where uτ is the friction velocity and R is the radius. The flow is driven

by a constant streamwise pressure gradient. For velocities, periodic boundary conditions are

employed at the inlet/outlet planes, while the no-slip condition is imposed on the wall.

The passive scalar is inserted at the inlet of the pipe with uniform concentration

c(r, θ, 0) = cI . We assume a totally absorbing wall with cW = c(R, θ, z) = 0. In the

context of mass transfer, this boundary condition is known as a perfect sink model, which

means that the scalar is irreversibly absorbed at the wall [38]. This assumption is usually

applicable only at the initial stages of the deposition process, before too much deposit builds

up. In the context of heat transfer, this condition corresponds to an isothermal wall. At

the exit plane, a non-reflecting boundary condition is employed,
∂c

∂t
+
∂uzc

∂z
= 0, where

uz(r, θ, L) is the local instantaneous axial velocity.

The governing equations are solved using an in-house unstructured finite volume solver,

Pantarhei [39–42]. The convection and diffusion terms are discretised using a second-order

central approximation. A third-order backward difference scheme is employed for the tran-

sient term. Orthogonal diffusion terms are treated implicitly, while the convection and non-

orthogonal diffusion terms are treated explicitly using third-order extrapolation in time.

The fractional step method is employed to correct velocities and pressure to satisfy the

continuity equation at the end of each time step. The resulting linear systems are solved

with the GMRES iterative algorithm implemented in the PETSc library [43]. Convergence

is accelerated using an algebraic multigrid preconditioner from the Hypre library [44].

The grid near the centre is H-type and transitions to O-type closer to the wall to fit the

cylindrical boundary, see Fig. 1(A). The cross-section is discretised with Nc,cross = 3.35 · 104

cells and Nz = 256 layers are employed in the streamwise direction, resulting in a total of

Nc = 8.6 · 106 cells. Grid spacings (in terms of wall units) in the radial, azimuthal and

axial directions are provided in table I. The ratio of the local grid size (computed as the

cubic root of the cell volume) to the Kolmogorov length scale η = (ν3/ε)
0.25

, where ε is the
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FIG. 1. Cross-sectional view of the grid (A) and variation of the bulk concentration, cB,

along the axial direction, z (B).

ReB Nc ∆r+
wall ∆θr+

max ∆r+
center,max ∆z+ ∆t

[
R
UB

]
Nsnapshots

5300 8.6 · 106 0.4 11.7 7.16 10.6 0.008 600

TABLE I. Grid parameter and time-step settings.

time-average dissipation rate, is less than 1.8 in most parts of the domain, which indicates

that the flow is overall well resolved [45]. The time step is ∆t = 0.008 R
UB

, corresponding to

a maximum CFL number of 0.6.

The simulation was initialized by inserting 4 counter-rotating streamwise vortices along

the pipe (to trigger transition to turbulence) and continued until the flow reached statistically

steady state. It was then restarted and statistics were collected over 20,000 time steps,

corresponding to 160 R
UB

. In total, 600 snapshots of the 3D velocity field were stored at

regular intervals (every 250∆t, corresponding to ∆ts = 2 R
UB

). The instantaneous velocity

and scalar fields were interpolated into a structured cylindrical grid with (Nr, Nθ, Nz) =

(256, 128, 256) data points. The database is similar in size and resolution to that of Hellstrom

et al. [46] and 2 to 3 times larger than that of Abreu et al. [22].

Due to the imposed boundary conditions, a fully developed velocity and a developing

scalar field are produced; snapshots of the two fields are shown in Fig. 2. Large structures

with high velocities can be seen at the centre of the pipe, while the scalar fluctuations are

growing in the downstream direction as a result of the imposed boundary condition. The
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FIG. 2. Contour plots of the instantaneous streamwise velocity (A) and the passive scalar

(B). The flow is from left to right, and only part of the computational domain is shown in

the z direction.

presence of an absorbing wall means that the section-average (or bulk) scalar concentration,

defined as cB = 8
∫ 1/2

0
uzcrdr, decreases in the streamwise direction, as shown in Fig. 1(B).

By time-averaging equation (3), integrating over the cross-section of the pipe, ignoring the

axial viscous term, and assuming a fully developed fluctuating scalar field, the governing

equation for cB is obtained (see also [47]),

dcB
dz

+ (cB − cW )
4Sh

ReSc
= 0, (4)

where Sh is the Sherwood number,

Sh = − 1

(cB − cW )

∂c

∂r

∣∣∣∣
r=1/2

. (5)

For constant Sh, equation (4) can be integrated analytically from an arbitrary location, z0,

to z and yield

cB(z) = cB(z0)exp

[
− 4Sh

ReSc
(z − z0)

]
, (6)

where we have taken into account that cW = 0. Thus cB(z) decays exponentially with

rate a = − 4Sh

ReSc
= −0.016 (calculated for Sh = 21.15, see later section IV). For the

range of z − z0 values considered, the exponent |a(z − z0)| � 1 and the rate of reduction

is approximately linear, as shown in Fig. 1(B); the theoretical decay is superimposed in

red and matches very well with the computations. Using the Sherwood number distribution
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FIG. 3. Variation of the mean streamwise velocity along the radial direction and

comparison with results from the literature for the same Reynolds number; normalisation

with global variables (A) and in wall units, denoted with a + superscript, (B).

obtained directly from the DNS (see again section IV), equation (4) can be integrated

numerically. The resulting distribution of cB is also plotted in figure 1(B). The results

match well with DNS, but they are not identical, because for the derivation of (4) a fully

developed fluctuating scalar field is assumed, but this is not the case close to the inlet. For

the pipe length of 7.5D examined, cB drops by about 14%.

The variation of the mean streamwise velocity (normalised with the value at the centre

line), uz/uc, against r/D is shown in Fig. 3(A); the velocity plot in wall units is shown in

Fig. 3(B), where u+
z = uz/uτ , y

+ = (1− r)+ = (1− r)uτ/ν, and uτ is the friction velocity.

The rms of the fluctuating velocities are shown in Fig. 4(A) and the Reynolds shear stress in

4(B). The averaging is taken in time and both homogeneous directions (axial and azimuthal).

The present results are compared to the those of Eggels et al. [48] and Wu et al. [49] for

the same Reynolds number with 3.1 · 106 and 6.7 · 107 cells respectively. Overall, both the

mean and rms velocities are in good agreement with the results from the literature. The

small discrepancy in the azimuthal direction is probably due to the discretisation near the

wall, which is somewhat coarser compared to standard DNS.
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FIG. 4. Variation of u′+r,rms, u
′+
θ,rms, u

′+
z,rms(A) and Reynolds shear stress u′ru

′
z

+
(B) along

the wall-normal distance y+ (all variables in wall units). In panel (A), the solid line

represents u′+z,rms, the dashed line u′+r,rms, and the dashed-dotted line u′+θ,rms.

III. PROPER ORTHOGONAL DECOMPOSITION (POD)

A. Standard POD

POD is a modal technique that decomposes a fluctuating field in terms of modes ranked

according to their energy [16]. For pipe flow, we define the inner product between two

fluctuating scalar or vector variables q1 and q2 as

〈q1, q2〉 =

∫
Ω

q∗1q2rdrdθdz, (7)

where ()∗ denotes the complex conjugate (for real variables it indicates the vector trans-

pose). If q1 = q2 = q and q represents the velocity field, then 〈q, q〉 is equal to twice

the turbulent kinetic energy integrated over the domain. It can be proven [17], that the

POD modes can be found by solving an eigenvalue problem for the cross-correlation tensor

C = q(r, θ, z, t)q∗(r′, θ′, z′, t), which in cylindrical coordinates becomes:

∫
Ω

C (r, r′, θ, θ′, z, z′)φ (r′, θ′, z′) r′dr′dθ′dz′ = λφ(r, θ, z), (8)
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where φ is the eigenvector and λ is the eigenvalue. The velocity or scalar fields q(r, θ, z, t)

can be reconstructed using these modes from,

q(r, θ, z, t) =
∞∑
n=1

an(t)φn(r, θ, z), (9)

where an(t) is the temporal POD coefficient of the n-th mode. Due to homogeneity in the

azimuthal direction, the cross-correlation tensor depends only on ∆θ = θ− θ′, which means

that the POD decomposition is equivalent to Fourier expansion in the azimuthal direction

[17]. Therefore, both the velocity and scalar fields are first decomposed in the azimuthal

direction as

q(r, θ, z, t) =
+∞∑

m=−∞

q̂m(r, z, t)eimθ, (10)

where q̂m(r, z, t) is the Fourier coefficient and m is the azimuthal wavenumber. The POD

decomposition is then applied to the Fourier coefficients q̂m(r, z, t), i.e.

q̂m(r, z, t) =
∞∑
n=1

a(n)
m (t)φ(n)

m (r, z), (11)

where φ
(n)
m (r, z) is the n-th spatial mode of the m-th wavenumber. The velocity field could

have been decomposed in Fourier modes in the streamwise direction as well; this is not done

in the present paper however, because the scalar field is not homogeneous in this direction

and thus the coupling between the velocity and scalar modes would not have been possible

to observe (cf. next section).

We have implemented the method of snapshots of Sirovich [50] to evaluate the POD

modes. First, a fast Fourier transform (FFT) is applied in the azimuthal direction and

the Fourier-transformed snapshots are stacked column-wise in one data matrix for each

wavenumber:

Q̂m =
[
q̂(1)
m , q̂(2)

m , ..., q̂(Nt)
m

]
, (12)

where q̂
(i)
m indicates the i-th snapshot of the m-th wavenumber, and Nt is the total number

of snapshots. We then solve the following eigenvalue problem of size Nt,

1

Nt

Q̂∗mWQ̂mΨm = ΨmΛm, (13)

where Ψm is the temporal eigenvector, Λm = diag
[
λ

(1)
m , λ

(2)
m , ... , λ

(Nt)
m

]
is a diagonal matrix

containing the eigenvalues (by convention λ
(1)
m ≥ λ

(2)
m ≥ ... ≥ λ

(Nt)
m ) and W is a weighting
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matrix that accounts for the volume expansion in the radial direction. The spatial modes

can be recovered from

Φm =
1√
Nt

Q̂mΨmΛ−1/2
m (14)

where Φm =
[
φ

(1)
m , φ

(2)
m , ... , φ

(Nt)
m

]
. The last factor, Λ

−1/2
m , ensures that the modes φ

(n)
m are

orthonormal according to the inner product defined in equation (7). The matrix Am of the

temporal coefficients a
(n)
m (t) that appear in equation (11) is obtained from Am =

√
NtΛ

1/2
m Ψ∗.

Keeping only the k � Nt largest eigenvalues, we can obtain an approximate reconstruction

of the flow or scalar fields for every wavenumber m from

Q̂(k)
m =

√
NtΦ

(≤k)
m Λ(≤k)1/2

m Ψ(≤k)∗
m , (15)

where the superscript (≤ k) denotes the truncated version of the corresponded matrices, for

example Φ
(≤k)
m =

[
φ

(1)
m , φ

(2)
m , ... , φ

(k)
m

]
and Λ

(≤k)
m = diag

[
λ

(1)
m , λ

(2)
m , ... , λ

(k)
m

]
.

B. Extended proper orthogonal decomposition

The standard POD analysis described above provides the optimal decomposition of a

specific scalar or vector variable. The extended POD (EPOD), introduced by Maurell et

al. [24] and Boree [23], can be employed to analyse correlations between different variables.

The temporal basis, Ψm, obtained from standard POD in one variable, is used to find the

spatial modes of another, synchronised variable. It is shown in Boree [23] that the obtained

EPOD modes are the only modes that are correlated with the original variable.

In this paper we aim to investigate the correlation between the velocity and scalar fluctu-

ations. Therefore, the temporal basis obtained from the POD analysis of the scalar fluctua-

tions will be used to decompose the velocity field. The velocity EPOD modes are obtained

from:

Φm,e =
1√
Nt

Q̂m,vΨm,sΛ
−1/2
m,s , (16)

where Φm,e =
[
φ

(1)
m,e, φ

(2)
m,e, ..., φ

(Nt)
m,e

]
is the matrix containing the EPOD modes (the subscript

e stands for ’extended’), Q̂m,v is the snapshot matrix containing the Fourier-transformed ve-

locities (as indicated by the subscript v) in the azimuthal direction, and Ψm,s is the temporal

mode of the scalar field (indicated by the subscript, s). The kinetic energy associated with
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each EPOD velocity mode is stored in the diagonal matrix

Λm,e = Λm,sΦm,eΦ
∗
m,eW, (17)

see [23]. The energy contained in each mode will be lower compared to standard POD

analysis of the velocity field, because the modes are no longer ranked based on their kinetic

energy. The reconstruction of the velocity field using the k largest EPOD modes is obtained

from

Q̂(k)
m,e =

√
NtΦ

(≤k)
m,e Λ(≤k)1/2

m,s Ψ(≤k)∗
m,s , (18)

where we have used the same notational convention as before.

The above analysis indicates that the POD scalar modes and the velocity EPOD modes

are coupled together and form a single entity. This is important for understanding some of

the common features presented later in section V. The coupled modes can also be obtained

by forming a combined snapshot matrix with columns that contain velocities and scalar

together. The underlying inner product is a weighted generalisation of (7), with a particular

form of the weighting matrix; see Appendix A for more details.

We close this section by mentioning that the recently proposed CPOD method [29] that

ranks modes based on the correlation between two variables, is also applicable to our case.

However for our purposes EPOD is more suitable. The latter applies standard POD to the

scalar and then obtains the corresponding velocity mode which is most correlated with the

scalar mode, as already mentioned. On the other hand, CPOD ranks modes based on the

correlation, thus the temporal coefficient takes into account both velocity and scalar fields.

IV. FUKAGATA-IWAMOTO-KASAGI (FIK) IDENTITY FOR THE SHERWOOD

NUMBER.

The FIK identity was first derived by Fukagata et al. [30] to quantify the laminar and tur-

bulent contributions to the skin friction coefficient in a channel, pipe and flat plate boundary

layer flow. For the present flow setting, we derive the FIK identify for the Sherwood num-

ber, defined earlier in equation (5). For the derivation, we first write the scalar transport

equation (3) in polar coordinates, take the time-average, assume rotational symmetry and

integrate twice over the cross section of the pipe (the details can be found in Appendix B).
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The resulting expression is

Sh = − 8

(cB − cW )

∫ 1

0

r2 ∂c

∂r
dr︸ ︷︷ ︸

ShFIK,1

+
8ReSc

(cB − cW )

∫ 1

0

r2u′rc
′dr︸ ︷︷ ︸

ShFIK,2

+
4ReSc

(cB − cW )

∫ 1

0

r(1− r2)

〈
∂uzc

∂z

〉
dr︸ ︷︷ ︸

ShFIK,3

+
4ReSc

(cB − cW )

∫ 1

0

r(1− r2)

〈
∂u′zc

′

∂z

〉
dr︸ ︷︷ ︸

ShFIK,4

− 4

(cB − cW )

∫ 1

0

r(1− r2)

〈
∂2c

∂z2

〉
dr︸ ︷︷ ︸

ShFIK,5

,

(19)

where 〈〉 indicates the operation

〈f〉 = f − 2

∫ 1

0

frdr (20)

This formula is a special case of the FIK identity for the Nusselt number provided in [33, 35]

for constant thermophysical properties. Note that in the above two equations the reference

quantities for distance and velocity are the pipe radius R and twice the bulk velocity 2UB

(instead of D and UB); this simplifies the resulting expression. Equation (19) indicates

that the Sh number can be decomposed into a mean-field contribution, ShFIK,1, contri-

butions arising from turbulent fluctuations, ShFIK,2, and contributions arising from axial

inhomogeneity of the mean and velocity/scalar correlation fields, ShFIK,3−5.

The variation of Sh along the length of the pipe, obtained directly from the wall gradient

(5), is shown in Fig. 5 with a solid black line. As expected, Sh attains the maximum

value at the pipe inlet because the scalar boundary layer (that provides resistance to mass

transfer) is thinnest at the inlet. However, Sh decays rapidly due to the growth of the scalar

boundary layer, approaching asymptotically a constant value. For z/D > 3, Sh is practically

constant (and equal to 21.15 at the exit). The asymptotic value is further compared with

the empirical relationship [51],

Sh =
(f/8) (ReB − 1000)Sc

1 + 12.7(f/8)1/2 (Sc2/3 − 1)
, (21)

where f = 0.316Re
−1/4
D is the friction factor for a smooth pipe with ReB < 2 · 104. A value

of Sh = 19.9 is obtained, which is marked with a horizontal dashed line in the figure. The

difference compared with DNS is less than 6 %.
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FIG. 5. Variation of Sh number and the constituent components ShFIK,1−5 along the

length of the pipe. The horizontal black dashed line indicates the value from the empirical

relation (21).

The different terms on the right hand side of equation (19) are also plotted with coloured

solid lines in Fig. 5. Their sum, ShFIK , matches well with DNS; the level of accuracy is

the same as in [32, 33, 35]. Close to the inlet the inhomogeneity term ShFIK,3 is dominant

but it quickly decays, while ShFIK,2 grows. Terms ShFIK,4−5 are insignificant in the entire

domain. At the exit of the pipe Sh ≈ ShFIK,1 +ShFIK,2, with ShFIK,2 approximately twice

as large as ShFIK,1, and thus 65.8% of the total wall transfer is attributed to the turbulent

term, ShFIK,2. For larger Re and/or Sc, it is expected that the contribution of ShFIK,2 will

increase. This is indeed confirmed by the results of Nemati et al. [33], where the Re is the

same as in our case, but Pr = 3.19 (the equivalent of Sc for heat transfer) and Shtot ≈ 35,

with ShFIK,2 approximately 80% of the Shtot.

Using the reconstructions from equations (15) and (18) we can compute the contribution

of each scalar POD mode and the associated velocity EPOD mode to the correlation u′rc
′ and

therefore to the time average Sh. We can therefore probe the origins of ShFIK,2 and analyse

which modes are dominant in determining the value of this term. This is the objective of

the next section. To the best of the authors’ knowledge, this is the first time POD/EPOD

decomposition is used to quantify the effect of different modes on the time-average mass

transfer to the wall using the FIK identity.
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FIG. 6. Eigenvalue distribution of the velocity (A) and scalar (B) POD modes for

different azimuthal wavenumbers, m. For each m, the relative energy content of n = 1− 4

modes is shown with coloured vertical bars (the corresponding values are in the left axis).

Lines show the cumulative energy over all wavenumbers obtained by retaining only a fixed

number of POD modes for each wavenumber, m (values on the right axis). Dashed line;

n = 1− 10, dashed-dotted line; n = 1− 100, and solid line; n = 1− 200.

V. RESULTS AND DISCUSSION

A. POD modes of the velocity and scalar fields

The distribution of the eigenvalues of the standard POD modes for the velocity and scalar

fields are shown in Fig. 6. For the flow field, the eigenvalues peak at azimuthal wavenumbers

m = 2 − 4, 6, while for the scalar the eigenvalues peak at m = 4, 6. In general, the energy

is skewed towards slightly higher wavenumbers for the scalar. Also, the relative energy of

the scalar modes is larger compared to the velocity modes, meaning that fewer modes are

required to reconstruct the scalar field. The same figure also shows a cumulative energy plot

over all wavenumbers. Around 40% of the turbulent kinetic energy and 55% of the scalar

variance can be captured by the first 10 POD modes. Larger numbers of modes (results

are shown for 100 and 200) consistently capture a larger proportion of the scalar variance

compared to turbulent kinetic energy, confirming that indeed fewer modes are required to

describe the scalar fluctuations compared to the velocity fluctuations. The explanation for
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FIG. 7. Cumulative energy of eigenmodes (A) and spatial distribution of the dominant

mode (n = 1) for streamwise and azimuthal wavenumbers k = 1 and m = 5 respectively,

φ1
(1,5) (B). In panel (A), the blue line indicates the present results (where Reτ = 180) and

the red line those of Duggleby et al. [18] (where Reτ = 150). In panel (B), the solid line

denotes the z-component, Φz, of mode φ1
(1,5), the dashed line the radial component, Φr, and

the dashed-dotted line the azimuthal component, Φθ. The modes are normalized as in [18].

this behaviour will be provided later when the spatial distribution of the modes is analysed.

As mentioned in section III, the velocity field is decomposed in Fourier modes only in the

azimuthal direction and not in the streamwise, even though both are homogeneous directions.

This must be borne in mind when comparing the present results to those of Duggleby et al.

[18], Hellstrom et al. [46] or Abreu et al. [22], where the flow is Fourier-decomposed in both

directions. The main difference is a slightly different energy distribution among azimuthal

wavenumbers. In Duggleby et al. [18] for example, where Reτ = 150, the largest eigenvalues

are found at m = 5, 6, whereas at higher Reynolds number, [19, 46], the peaks are between

m = 2− 4. In the present decomposition, peaks are found at m = 2− 4, 6.

In order to have a more consistent comparison with literature, the velocity field was

Fourier-decomposed in both directions and subsequent POD analysis was also performed.

This resulted in eigenmodes φn(k,m), where k,m are the streamwise and azimuthal wavenum-

bers respectively. The results are compared to those of Duggleby et al. [18] in Fig. 7. Panel

A shows the cumulative energy and panel B the spatial distribution of the modulus of the

three components of the specific eigenmode, φ1
(1,5). There are very small differences in the
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FIG. 8. Cross-section streamlines and contour plots of the z-component of the dominant

velocity POD mode at z = 6.5D for m = 2 (A), m = 4 (B), m = 6 (C), and dual-plane

contour plots of t he z-component for m = 2 (D), m = 4 (E), m = 6 (F).

energy and shape of eigenmodes between the two sets of results, which is probably due to

the slightly lower Reynolds number in Duggleby et al. [18]. The peak energy is found at

wavenumbers k = 1, m = 5 − 6 as in [18], but the lower energy modes behave somewhat

differently, most likely again due to the small difference in Reynolds number.

The shape of the streamwise velocity component of the dominant (n = 1) eigenmode for

m = 2, 4, 6 is plotted in Fig. 8. The cross-stream flow is also visualised using streamlines

superimposed on contours of streamwise velocity. The modes look qualitatively like the ones

reported in Duggleby et al. [18], Baltzer et al. [19] and Hellstrom et al. [46]. For small

wavenumber m the modes penetrate deeply into the core of the flow, but as m increases

their presence is confined to areas closer to the wall. The closed streamline loops in the

cross-stream plane transport scalar from the outer regions towards the wall (and vice versa)

and contribute to the Sh, and in particular to ShFIK,2 component. It is exactly these

contributions of velocity modes to ShFIK,2 that we want to quantify.
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(d) (e) (f)

FIG. 9. Cross-section contour plots of the dominant scalar POD mode at z = 6.5D for

m = 2 (A), m = 4 (B), m = 6 (C), and dual-plane contour plots for m = 2 (D), m = 4 (E),

m = 6 (F).

.

The dominant POD modes for the scalar (for the same m as in Fig. 8) are visualised

in Fig. 9. For the higher wavenumbers, the mode shapes are similar to those of velocity.

However, for m = 2 the penetration to the core of the flow is weaker. This is consistent

with the instantaneous plots shown earlier in Fig. 2, where large velocity fluctuations can be

observed around the centre line; for the scalar however the activity is confined closer to the

wall, with occasional ejections towards the centre. This is expected because of the gradual

growth of the scalar boundary layer, which starts at the pipe inlet and is developing within

an already established underlying turbulent flow. This feature also explains why the scalar

POD eigenvalues are skewed towards larger m, as shown in Fig. 6.

The previous two figures showed significant similarities, but also some differences between

the velocity and scalar POD modes, especially for low m. The similarities arise from the

fact that the passive scalar transport is governed by the underlying velocity field while the
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FIG. 10. Distribution of the kinetic energy of the velocity EPOD modes. The left vertical

axis shows the relative energy of each mode, while the right axis shows the cumulative

energy integrated over wavenumbers (dashed line for n = 1− 15, dashed-dotted line for

n = 1− 100 and solid line for n = 1− 200.)

differences are due to the developing nature of the scalar boundary layer as opposed to the

fully developed turbulent flow. In order to find the velocity modes correlated with the scalar

modes, we now proceed with examining the EPOD velocity modes.

B. EPOD modes of the velocity field

The kinetic energy distribution of the EPOD modes, calculated from equation (17), is

plotted in Fig. 10. The shape of the distribution is similar to that of the standard POD

modes shown in Fig. 6(A), however the kinetic energy of EPOD modes is lower. This

indicates that the velocity modes that are most correlated with scalar fluctuations do not

necessarily have much kinetic energy. This is confirmed by the cumulative distribution, also

shown in Fig. 10. Indeed, the cumulative kinetic energy contained in all EPOD modes with

azimuthal mode number m = 1−20 and n = 1−10 is 33%, while for n = 1−100 is 60% (the

corresponding values for the standard velocity POD modes are 40% and 80%); for scalar

modes the values are 55% and 87%, respectively. Thus velocity modes that contain, for

example 60%, of the turbulent kinetic energy, are correlated with scalar modes that account

for 87% of the scalar variance. This is due to the fact that scalar fluctuations are localised

close to the walls of the pipe, so only the near-wall flow structures are strongly correlated
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with the scalar. Velocity modes that have strong presence away from the wall become less

important, since the scalar fluctuations are smaller there.

The shapes of the velocity EPOD modes are plotted in Fig. 11. A clear difference with

the standard POD modes (shown in Fig. 8) can be observed in the (z, x) plane contours

(bottom row in both figures). Indeed, while the dominant POD mode is constant along

the streamwise direction (the contours are horizontal strips parallel to the wall), the EPOD

mode shows a gradual growth, reflecting a similar behaviour for the scalar (refer to the

bottom row of Fig. 9). The differences in the cross-stream (x, y) plane are more difficult

to discern, but they are present. For example, the peak locations of the EPOD modes are

closer to the wall compared to the POD modes; for example, for m = 2 at z/D = 6.5 the

peaks are at r/R = 0.41 and 0.34 respectively (scalar modes peak at r/R = 0.43).

In Fig. 12 we collect together isosurface plots of the three modes. The similarities

between the scalar (left column) and the velocity EPOD (right column) modes are very

clear. There is another important feature that is also revealed in this figure; these two

sets of modes are in phase in the azimuthal direction. For example, positive streamwise

velocity fluctuations appear at the same θ locations as positive scalar fluctuations. This

is explained by inspection of the secondary cross-stream flow patterns shown in the top

row of Fig. 11. The two streamwise vortices that flank the area with positive streamwise

velocity (shown in red) transport scalar from the outer flow regions to the wall. In these

regions, the scalar has higher values compared to the near wall-region, thus resulting in

positive fluctuations. When velocity and scalar POD modes are evaluated separately this

close connection between the two fields is not apparent (refer to figures 8 and 9). It is still

there, but hidden by the fact that the starting angular position in the azimuthal direction

is arbitrary. Due to homogeneity in this direction, each mode can be rotated as a whole,

thus when velocity and scalar modes are considered separately they have different starting

angular positions. When they are considered together however, they form one entity with a

single starting location, and thus the underlying connection between the two fields is clearly

revealed.

At the bottom row of the Fig. 12 isosurfaces of higher-order modes are shown. They have

smaller streamwise length scales, but velocity EPOD and scalar modes are still in phase.
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FIG. 11. Cross-section streamlines and contour plots of the z-component of the dominant

velocity EPOD mode at z = 6.5D for m = 2 (A), m = 4 (B), m = 6 (C), and dual-plane

contour plot of the z-component for m = 2 (D), m = 4 (E), m = 6 (F).

C. Contribution of individual modes to Sh.

We can now quantify the contribution of the structures described in the previous section

on the turbulent part, ShFIK,2, of the mass transfer coefficient, Sh, see equation (19). More

specifically, the velocity EPOD and scalar POD modes for different wavenumbers m and

orders n are used to reconstruct the instantaneous velocity and concentration fields and

their correlation u′rc
′(m,n); the latter is then employed to compute ShFIK,2(m,n).

A cumulative plot, obtained using groups of azimuthal modes, m = 1 − 5, m = 1 − 10,

m = 1− 15, m = 1− 20 is shown in Fig. 13. This figure makes it clear that is necessary to

use a large number of POD modes in order to obtain a good representation of ShFIK,2. A

large difference in the contribution of individual wavenumbers m can observed; for example,

m = 2 does not contribute as much compared to m = 4− 8. This is not surprising because

modes with higher m are located closer to the wall, the area with the largest fluctuations of
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FIG. 12. Isosurfaces of scalar POD modes (left column), POD streamwise velocity modes

(middle column) and EPOD streamwise velocity modes (right column). Top row; m = 2,

n = 1, middle row; m = 4, n = 1 and bottom row; m = 4, n = 4. The isosurfaces

correspond to 50% of maximum positive (red) and negative (blue) value.

c. The cumulative plot in Fig. 13 indicates that a substantial proportion of ShFIK,2, equal

to about 38%, can be reconstructed using the wavenumber group m = 1 − 10 and mode

orders n = 1− 10.

Instantaneous maps of the Sherwood number and of the streamwise fluctuating velocity

at the cylindrical surface located at y+ = 15 are shown in figures 14 and 15 respectively.

The figures display both the DNS results (left panel) and the reconstructed fields (right

panel). For the selected range of m and n (refer to figure caption), 49% of the turbulent
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FIG. 13. Cumulative ShFIK,2(m1 : m2, n1 : n2) =
m2∑

m=m1

n2∑
n=n1

ShFIK,2(m,n) using

wavenumber groups m = 1− 5 (A), m = 1− 10 (B) m = 1− 15 (C) and m = 1− 20 (D).

Results with different mode orders n are indicated with lines of different colour.

part of the time-average wall transfer can be reconstructed. It is clear that truncation of

the EPOD velocity modes acts as a low-pass filter, removing small-scale structures from the

flow. Notice also the dominant role of the coherent structures in the wall transfer process.

Indeed, there is a very clear correlation between the maps of the flow structures and the

Sh number, exactly as established and described in the previous section. These two figures

also explain the need for at least a moderate number of mode order, n. Orders n > 1 are

associated with streamwise ligaments, as shown in the bottom row of Fig. 12, that are

necessary to capture the instantaneous inhomogeneity in the z direction.

We now consider the integral of ShFIK,2 over the length of the pipe, ΓT =
∫ L

0
ShFIK,2dz,
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(a) (b)

FIG. 14. Contour plot of the instantaneous Sherwood number, DNS result (A),

reconstructed map using m = 1− 15 and n = 1− 10 (B). The vertical axis denotes the

normalised perimeter (from 0 to π).

(a) (b)

FIG. 15. Contour plot of the instantaneous streamwise fluctuating velocity, u′+z , at

y+ = 15 (A), and reconstructed velocity field using EPOD modes m = 1− 15 and

n = 1− 10 (B). The vertical axis denotes the normalised perimeter (from 0 to π).

which we decompose as ΓT =
∑
m

∑
n

Γ(m,n) where

Γ(m,n) =

∫ L

0

ShFIK,2(m,n)dz. (22)

The ratio Γ/ΓT is plotted in Fig. 16 for different values of m and n. It can be seen that

Γ(m,n) has large values in the region m = 4−8 (the maximum is at m = 6), which indicates

that it is the near-wall turbulent structures that contribute most strongly to the wall mass

transfer. This can be also seen from the gradient of the curves that represent the cumulative

Γ, also shown in Fig. 17, which is maximised in the aforementioned region of m. Fig. 17(A)

shows the cumulative Γ for a wider range of n, shown using symbols, for single values and

groups of wavenumbers, m, where the horizontal axis is the kinetic energy or scalar variance
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FIG. 16. Ratio Γ/ΓT for different wavenumbers, m, and POD numbers, n (left axis). The

right axis shows the cumulative ratio summed over wavenumbers m = 0− 20 (dashed line

is n = 1− 15, dashed-dotted line is n = 1− 100, and the solid line is n = 1− 200)

and the vertical axis is the ratio Γ/ΓT . For example, the single wavenumber m = 6 (dashed

yellow line), which corresponds to the peak in Fig. 16, is responsible for about 9% of the

total wall mass transfer, while the group m = 1− 5 (solid blue line) accounts for 20%. If we

focus on the range m = 1−15 and n = 1−10, then approximately 49% can be reconstructed.

This group of m × n = 150 modes (omitting modes with negative m) correspond to only

about 0.4% of the total number of available POD modes.

To provide further insight, we now analyse the contribution of each mode in relation to

its kinetic energy; which is also plotted in Fig. 17(A) for single wavenumbers and 17(B)

for groups of wavenumbers. Intuitively, the larger the energy of a mode, the more it will

contribute to the total wall transfer, so we expect a positive correlation. The steeper the

slope, the larger the contribution of a mode for a given turbulent kinetic energy or scalar

variance. As can be seen from Fig. 17(A), there is a large spread in the slopes of the

velocity EPOD modes (solid lines), but the spread is much smaller for the slope of scalar

modes (dashed lines). Interestingly, while velocity EPOD modes with m = 6 may have the

largest overall contribution to the wall transfer in absolute terms (solid yellow line in Fig.

17(A), modes with m = 8 have a slightly larger slope, and are thus more efficient. Fig. 17(B)

shows that increasing the range of m values, the cumulative transfer reaches an asymptotic

relation with respect to the kinetic energy contained within the EPOD modes. This slope

is larger compared to the one relating the transfer and the variance of scalar modes.
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FIG. 17. Γ/ΓT plotted against eigenvalues for single wavenumbers (A) and groups of

wavenumbers (B). In both figures, solid lines represent eigenvalues from velocity EPOD

modes, and dashed lines eigenvalues from scalar POD modes. A circle corresponds to

n = 1− 10, a square to n = 1− 100 and a diamond to n = 1− 200.

D. Quadrant analysis

We further investigate the fractional contributions of the instantaneous velocity and scalar

fluctuations to the turbulent scalar flux u′rc
′ that appears in ShFIK,2 using quadrant analysis.

The signs of the velocity and scalar fluctuations partition the (c′, u′r) plane in 4 quadrants.

In quadrant Q1 we have u′r > 0 and c′ > 0, in Q2 u
′
r > 0 and c′ < 0, in Q3 u

′
r < 0 and

c′ < 0, and finally in Q4 u
′
r < 0 and c′ > 0. The first quadrant, Q1, is associated with

sweep events (fluid elements with high scalar concentration move towards the wall), while

Q3 is associated with ejection events (elements with low scalar concentration are ejected

away from the wall). The second quadrant, Q2, represents motion of fluid particles with

high concentration away from the wall, and finally Q4 contains motion towards the wall of

low concentration particles (more details can be found in the review of Wallace [52]).

The turbulent flux in the radial direction, u′rc
′, can be written as

u′rc
′ =

∫ +∞

−∞

∫ +∞

−∞
u′rc
′P (u′r, c

′)du′rdc
′, (23)

where P (u′r, c
′) is the joint probability density function (JPDF) and u′rc

′P (u′r, c
′) is the

weighted JPDF. In order to elucidate the contribution of each quadrant to the scalar flux,
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FIG. 18. Contour plots of the weighted probability density function at y+ = 15− 30. Top

row (panels A,B,C) is for z/D = 2, middle row (panels D,E,F) is for z/D = 4 and bottom

row (panels G,H, I) is for z/D = 6.5. Left column (panels A,D,G) is from DNS data,

middle column (panels B,E,H) is from low order reconstruction with m = 1− 15 and

n = 1− 10, and right column (panels C,F,I) is from a high order reconstruction with

m = 1− 20 and n = 1− 100.

contours of the weighted JPDF evaluated at three streamwise locations are shown in Fig.

18. The DNS results, depicted in the left column of the figure, indicate that the most

significant contribution to u′rc
′ arises from Q1 and Q3; this clearly indicates the importance

of the sweep and ejection events. We further investigate the ability of the reconstructed

velocity and scalar fields using EPOD and POD modes respectively to capture the DNS

behavior. In Fig. 18 results are presented for mode groups m = 1 − 15 and n = 1 − 10

(middle column) as well as m = 1 − 20 and n = 1 − 100 (right column). The former (low
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order) reconstruction results in an almost symmetric pattern of sweep and ejection events

and no Q2 and Q4 events are produced. Such a reconstruction clearly cannot reproduce the

richness of the DNS results. Note also that it has larger peaks than the DNS. The reason is

that the range of values for u′r and c′ is more narrow; see for example smaller u′r value range

compared with the DNS and the higher order reconstruction. A more narrow range leads to

the overshoot of the JPDF values (to preserve an integral of 1) and this to an overshoot of

the weighted JPDF. On the other hand, the higher-order reconstruction is much closer to

DNS but still clips some of the largest (and more rare) magnitudes of the scalar and velocity

fluctuations. Furthermore, events in Q2 and Q4 have now made an appearance.
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FIG. 19. In panels (A-B), the conditional fluxes u′rc
′(r|Qi) are plotted at z/D = 2 and

z/D = 6.5 and in panel (C) these fluxes are used to evaluate the components ShFIK,2|Qi,

see equation (25). The dashed line denotes m = 1− 15 and n = 1− 10, the dashed-dotted

line m = 1− 20 and n = 1− 100 and the solid line denotes values directly from DNS data.

In panel (C), the circles denote ShFIK,2 =
4∑
i=1

ShFIK,2|Qi, the solid black line denotes DNS

values and the other colours and line types are the same as in panels (A,B) (only data for

m = 1− 20 and n = 1− 100 are shown). Panel (D) shows contours of the ratio

RQ(m,n) =
ShFIK,2|Q3

ShFIK,2|Q1
at z/D = 6.5.

The effect of the mode parameters on the quality of reconstruction is further analysed

in Fig. 19. The weighted JPDFs at several radial locations were computed and integrated

over each quadrant; the results are shown for 2 streamwise locations, z/D = 2 and 6.5, in
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panels A and B respectively (top row). For example, the quantity plotted against r in the

top-right square of panel A (denoted as Q1) is

u′rc
′(r|Q1) =

∫ +∞

0

∫ +∞

0

u′rc
′P (u′r, c

′)du′rdc
′. (24)

The PDF was computed using the DNS data as well as reconstructed field data for the

two (m,n) combinations considered in Fig. 18. These plots confirm that the low order

reconstruction only contributes to Q1 and Q3, whereas the high order one contributes to

all quadrants. The more accurate reconstruction also indicates that Q3 makes the largest

contribution, i.e. ejection (rather than sweep) events play the dominant role, which is also

observed in Nagano and Tagawa (1988) [53]. The conditioned turbulent fluxes peak close to

the wall and grow in the streamwise direction, in agreement with figures 11 and 5 respectively.

Furthermore, both the high order reconstruction and the DNS data show that Q2 and Q4

events have almost equal contribution.

The conditional turbulent fluxes, u′rc
′(r|Qi), can be used to decompose ShFIK,2 as

ShFIK,2 =
4∑
i=1

ShFIK,2|Qi =
4∑
i=1

8ReSc

(cB − cW )

∫ 1

0

u′rc
′(r|Qi)r

2dr (25)

The variation of the components ShFIK,2|Qi in the streamwise direction is shown in Fig.

19C. Close to the entrance, where the scalar field is rapidly developing, the contributions of

Q1 and Q3 are very similar. Further downstream, however, the contribution of Q3 starts to

dominate. This is further investigated in Fig. 19D, where contours of the ratio

RQ(m,n) =
ShFIK,2|Q3

ShFIK,2|Q1

=

∫ 1

0
u′rc
′(r|Q3)(m,n)r2dr∫ 1

0
u′rc
′(r|Q1)(m,n)r2dr

, (26)

are plotted in the (m,n) plane. The figure shows that the asymmetry increases for growing

wavenumber, m, and POD number, n.

VI. CONCLUSIONS

In this paper, we investigated the role of coherent structures on passive scalar transport

and wall transfer in a turbulent pipe flow at Re = 5300 (based on bulk velocity). The

methodology presented has allowed us to analyse individual coherent structures and link

them to the time-average wall transfer coefficient.
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The scalar structures were identified with POD, while the flow structures were correlated

with those of the scalar with EPOD. Both velocity and scalar fields were Fourier-transformed

in the homogeneous azimuthal direction and expressed in terms of azimuthal wavenumbers,

m. The POD analysis reveals that wavenumbers m = 4−6 have the highest scalar variance,

with the velocity modes peaking in slightly smaller m. Visualisation of modes allows us

to gain insight into the scalar transport mechanism. Velocity POD and EPOD modes are

qualitatively similar, but EPOD modes have weaker presence in the core of the pipe. Recir-

culating patterns in the cross-section transport scalar from the outer flow regions towards

the wall and vice-versa.

Using the FIK identity, we evaluated the contribution of turbulent scalar flux to the

time-average Sherwood number, Sh. We found that up to 65.8% of Sh is due to veloc-

ity/scalar correlations; the exact value depends on the axial location. POD and EPOD

modes were subsequently employed to decompose the correlations and analyse the contribu-

tion of individual modes to Sh. The results indicate that the dominant mode with azimuthal

wavenumber m = 6 has the largest contribution to Sh. In general, near-wall structures with

wavenumbers m = 4−8 contribute mostly to Sh, especially when considering their relatively

low turbulent kinetic energy. By combining modes with m = 1 − 15 and n = 1 − 10, it is

possible to reconstruct 49% of the turbulent component of the wall transfer coefficient; these

modes contain only 31% of the kinetic energy. Finally, using quadrant analysis we quantified

the contribution of sweep and ejection events and found that ejection events, located in the

third quadrant, dominate.

Future work will explore the potential of the methodology for gaining insight into more

complex settings that may include inertial particles, chemical reactions and different flow

configurations. This approach can also be exploited to actively or passively control the wall

transfer rate, in the same way that the understanding of the effect of different flow structures

in the skin friction have recently led to the developments of drag reducing actuation strategies

that offer net power savings, even in large Re numbers [37].
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APPENDIX A: COMPARISON BETWEEN POD AND EPOD

In EPOD the inner product between two fluctuating vector variables q1 and q2 takes the

form

〈q1, q2〉E =

∫
Ω

q∗1W
′q2 rdrdθdz, (27)

where W ′ is a weighting matrix. If W ′ = I i.e the identity matrix, this definition is the same

as for standard POD, equation (7). For EPOD however, some of the variables are given zero

weight. For example, in our case vectors q1 and q2 contain both velocity and scalar fields

(for instance q1 = [ur1 , uθ1 , uz1 , c1]T (r, θ, z)) and the weighting matrix W ′ is diagonal with

the elements corresponding to the velocity field set equal to 0, i.e. W ′ = diag (0,0,0,1).

Assuming the finite volume method is used, the discrete form of equation (27) is

〈q1, q2〉E = q∗1Wq2, (28)

where W is the product of W ′ and a diagonal matrix V containing the grid cell volumes,

i.e. W = diag (0,0,0,V ). Performing snapshot POD on the 4 variables simultaneously,

one obtains a temporal eigenvector satisfying,

1

Nt

Q∗combWQcombΨ = ΨΛ, (29)

where Qcomb is the combined snapshot matrix with columns that contain both velocity and

scalar. However, due to the structure of the weighting matrix W , the solution is the same as

the one arising from applying standard POD to the scalar only. The spatial modes, obtained

from

Φ =
1√
Nt

QcombΨΛ−1/2 (30)

contain both the POD scalar modes and the EPOD velocity modes.
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APPENDIX B: DERIVATION OF THE FIK IDENTITY.

The FIK identity for a passive scalar is derived in this appendix; the process is similar

to that of Kasagi et al. [31] and Nemati et al. [33]. The dimensionless scalar transport

equation written in polar coordinates is

∂c

∂t
+ ur

∂c

∂r
+
uθ
r

∂c

∂θ
+ uz

∂c

∂z
=

1

ReSc

[
1

r

∂

∂r

(
r
∂c

∂r

)
+

1

r2

∂2c

∂θ2
+
∂2c

∂z2

]
, (31)

where distances are normalised with the radius R, velocities with twice the bulk velocity

2UB, and scalar concentration with the value at the inlet, cI . The Reynolds-averaged form

of (31) is

0 =
1

r

∂

∂r
r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
− 1

ReSc

∂2c

∂z2
+
∂uzc

∂z
+
∂u′zc

′

∂z
, (32)

where we have assumed that the time-average flow is axisymmetric, i.e. uθ = 0, ∂c
∂θ

= 0, and

has only an axial component, i.e. ur = 0. Setting

Iz = − 1

ReSc

∂2c

∂z2
+
∂uzc

∂z
+
∂u′zc

′

∂z
(33)

as the streamwise in homogeneity term, we get the simpler form

0 =
1

r

∂

∂r
r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
+ Iz, (34)

The Sherwood number at the wall is defined as:

Sh = −2kR

α
= −2

dc

dr

∣∣∣∣
wall

1

cB − cW
(35)

where k =
Jw

cB − cW
is the mass transfer coefficient, Jw = α

∂c

∂r

∣∣∣∣
wall

is the wall flux and α is

the diffusivity.

Equation (32) is integrated over the cross-section of the pipe,

0 =

∫ 1

0

1

r

∂

∂r
r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
rdr +

∫ 1

0

Izrdr ⇒ 0 = − 1

ReSc

∂c

∂r

∣∣∣∣
wall

+

∫ 1

0

Izrdr (36)

Equation (36) is now multiplied with 2 and subtracted from (32),

0 =
1

r

∂

∂r
r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
+ 〈Iz〉+

2

ReSc

∂c

∂r

∣∣∣∣
wall

, (37)

where for a generic variable f we have defined the operator 〈f〉 = f −2
∫ 1

0
frdr. Integrating

(37) over a cross-section of radius r we get,

0 =

∫ r

0

1

r

∂

∂r
r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
rdr +

∫ r

0

〈Iz〉rdr +

∫ r

0

2

ReSc

∂c

∂r

∣∣∣∣
wall

rdr ⇒

Sh(cB − cW )

ReSc

r2

2
= r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
+

∫ r

0

〈Iz〉rdr
(38)
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where the definition of Sherwood number, equation (35), was used. Finally, (38) is integrated

again over the cross-section of the pipe,∫ 1

0

Sh(cB − cW )

ReSc

r2

2
rdr =

∫ 1

0

r

[
u′rc
′ − 1

ReSc

∂c

∂r

]
rdr +

∫ 1

0

∫ r

0

〈Iz〉rdrrdr ⇒

Sh(cB − cW )

ReSc

1

8
=

∫ 1

0

ru′rc
′rdr − 1

ReSc

∫ 1

0

r
∂c

∂r
rdr +

∫ 1

0

∫ r

0

〈Iz〉rdrrdr
(39)

Using integration by parts, the final expression for the FIK identity becomes

Sh = − 8

(cB − cW )

∫ 1

0

r
∂c

∂r
rdr +

8ReSc

(cB − cW )

∫ 1

0

ru′rc
′rdr+

4ReSc

(cB − cW )

∫ 1

0

(1− r2)

(〈
∂uzc

∂z

〉
+

〈
∂u′zc

′

∂z

〉)
rdr − 4

(cB − cW )

∫ 1

0

(1− r2)

〈
∂2c

∂z2

〉
rdr.

(40)

This form is used in the rest of the paper.
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