379 research outputs found
Museums and the making of textile histories: Past, present, and future
Many different types of museums collect, document, and preserve textiles, interpreting them through temporary and semi-permanent exhibitions, publications, and web- site interventions – sometimes independently, sometimes as part of a broader histo- ry of art and design, science and technology, social history and anthropology, local history or world cultures (for example, see the range and approaches in major fash- ion capitals such as London, Paris, Milan, New York with a long tradition of textile production as well as consumption, and in manufacturing cities such as Krefeld, Lyon, Manchester). Nonetheless, textile-focused events seldom receive great public attention or crit- ical acclaim, with the possible exceptions of innovative temporary exhibitions such as Jean-Paul Leclercq, “Jouer la Lumière” (Paris, Les Arts Décoratifs, 2001); Thomas P. Campbell, “Tapestry in the Renaissance: Art and Magnificence” (New York, The Metropolitan Museum of Art, 2002); Amelia Peck et al., “Interwoven Globe. The Worldwide Textile Trade, 1500-1800” (New York, The Metropolitan Museum of Art, 2013-2014); John Styles, “Threads of Feeling” (London, The Foundling Hospital, 2010-2011; Colonial Williamsburg, 2014).1 The aims of this debate are to draw on the different cultural experiences and disciplinary backgrounds of participants: – To generate discussion over the role of museums in making and representing tex- tile histories. Museums are not only depositories of textile objects, but also write or make both public and academic history through displays and publications. But how does their work relate to university research and dissemination, feed such research, or react to it? How might interactions between museums and universities in different regions and cultures be developed in the future? – To consider where innovative museum work is being undertaken (locally, region- ally, nationally, internationally), wherein lies its innovation, and how it might suggest directions for the future (in collecting, interpretation, etc.). By interpreta- tion, I mean any analogue or digital explanation that contextualizes the objects on display. – To suggest that the most dynamic study of objects from 1500 to the present is no longer limited to art historians – indeed, that the focus in art history on textiles that belong within a well-established tradition of connoisseurship (in which tap- estries and high-end commissions for wall-hangings dominate) is being challenged by the adoption of a more inclusive approach among historians, design historians, and historians of material culture. [Lesley Miller] EAN: 978-2-917902-31-
Lattice sites of ion-implanted Li in diamond
Published in: Appl. Phys. Lett. 66 (1995) 2733-2735
citations recorded in [Science Citation Index]
Abstract: Radioactive Li ions were implanted into natural IIa diamonds at temperatures between 100 K and 900 K. Emission channelling patterns of a-particles emitted in the nuclear decay of 8Li (t1/2 = 838 ms) were measured and, from a comparison with calculated emission channelling and blocking effects from Monte Carlo simulations, the lattice sites taken up by the Li ions were quantitatively determined. A fraction of 40(5)% of the implanted Li ions were found to be located on tetrahedral interstitial lattice sites, and 17(5)% on substitutional sites. The fractions of implanted Li on the two lattice sites showed no change with temperature, indicating that Li diffusion does not take place within the time window of our measurements.
Amorphization of ZnSe by ion implantation at low temperatures
Radioactive Cd and Se ions were implanted into high-resistivity ZnSe single crystals around 60 K and 300 K. Their lattice sites were determined by measuring the channelling and blocking effects of the emitted conversion electrons or positrons directly after implantation and after annealing at different temperatures up to 600 K. Implantation doses were in the range of 3 - 3/cm. The experimental results of this emission channelling technique yield a high substitutional fraction of the implanted ions directly after implantation at room temperature. At 60 K the substitutional fraction of implanted ions is highly sensitive to the ion dose. Above a critical dose of around 1.4 Cd/cm or 2.1 Se/cm the substitutional fraction completely disappears indicating an amorphous surrounding of the probe atom. Damage recovery was observed below room temperature and at an annealing temperature around 500 K. A quantitative analysis of measured channelling yields will be given by comparison with calculated electron channelling profiles based on the dynamical theory of electron diffraction
-emission channeling investigations of the lattice location of Li in Ge
The -emission channeling and blocking technique is a direct method for lattice site determination of radioactive atoms in single crystals. Position-sensitive detection of emitted -particles provides an efficient means of carrying out such experiments at very low doses (10-10 implanted probe atoms per spectrum). Comparison of the experimental data to Monte Carlo simulations of complete two-dimensional channeling patterns (e.g. ±2°C around , and axes, which also includes all relevant planar directions) allows for straight-forward identification and rather accurate quantitative determination of occupied lattice sites, while at the same time the energy spectrum of emitted a particles gives information on the probe atom depth distribution. We illustrate this for the case of ion implanted Li (t_=0.8 s) in Ge, where we identify mainly tetrahedral Li at room temperature, and bond-centered Li at slightly elevated temperature
Dissecting the role of p53 phosphorylation in homologous recombination provides new clues for gain-of-function mutants
Regulation of homologous recombination (HR) represents the best-characterized DNA repair function of p53. The role of p53 phosphorylation in DNA repair is largely unknown. Here, we show that wild-type p53 repressed repair of DNA double-strand breaks (DSBs) by HR in a manner partially requiring the ATM/ATR phosphorylation site, serine 15. Cdk-mediated phosphorylation of serine 315 was dispensable for this anti-recombinogenic effect. However, without targeted cleavage of the HR substrate, serine 315 phosphorylation was necessary for the activation of topoisomerase I-dependent HR by p53. Moreover, overexpression of cyclin A1, which mimics the situation in tumors, inappropriately stimulated DSB-induced HR in the presence of oncogenic p53 mutants (not Wtp53). This effect required cyclin A1/cdk-mediated phosphorylation for stable complex formation with topoisomerase I. We conclude that p53 mutants have lost the balance between activation and repression of HR, which results in a net increase of potentially mutagenic DNA rearrangements. Our data provide new insight into the mechanism underlying gain-of-function of mutant p53 in genomic instability
Time Estimation Predicts Mathematical Intelligence
Background: Performing mental subtractions affects time (duration) estimates, and making time estimates disrupts mental subtractions. This interaction has been attributed to the concurrent involvement of time estimation and arithmetic with general intelligence and working memory. Given the extant evidence of a relationship between time and number, here we test the stronger hypothesis that time estimation correlates specifically with mathematical intelligence, and not with general intelligence or working-memory capacity.
Methodology/Principal Findings: Participants performed a (prospective) time estimation experiment, completed several subtests of the WAIS intelligence test, and self-rated their mathematical skill. For five different durations, we found that time estimation correlated with both arithmetic ability and self-rated mathematical skill. Controlling for non-mathematical intelligence (including working memory capacity) did not change the results. Conversely, correlations between time estimation and non-mathematical intelligence either were nonsignificant, or disappeared after controlling for mathematical intelligence.
Conclusions/Significance: We conclude that time estimation specifically predicts mathematical intelligence. On the basis of the relevant literature, we furthermore conclude that the relationship between time estimation and mathematical intelligence is likely due to a common reliance on spatial ability
- …