325 research outputs found
Core-Collapse Supernovae: Modeling between Pragmatism and Perfectionism
We briefly summarize recent efforts in Garching for modeling stellar core
collapse and post-bounce evolution in one and two dimensions. The transport of
neutrinos of all flavors is treated by iteratively solving the coupled system
of frequency-dependent moment equations together with a model Boltzmann
equation which provides the closure. A variety of progenitor stars, different
nuclear equations of state, stellar rotation, and global asymmetries due to
large-mode hydrodynamic instabilities have been investigated to ascertain the
road to finally successful, convectively supported neutrino-driven explosions.Comment: 8 pages, contribution to Procs. 12th Workshop on Nuclear
Astrophysics, Ringberg Castle, March 22-27, 200
General-Relativistic MHD for the Numerical Construction of Dynamical Spacetimes
We assemble the equations of general relativistic magnetohydrodynamics (MHD)
in 3+1 form. These consist of the complete coupled set of Maxwell equations for
the electromagnetic field, Einstein's equations for the gravitational field,
and the equations of relativistic MHD for a perfectly conducting ideal gas. The
adopted form of the equations is suitable for evolving numerically a
relativistic MHD fluid in a dynamical spacetime characterized by a strong
gravitational field.Comment: 8 pages; scheduled for March 10 issue of Ap
Differential Rotation in Neutron Stars: Magnetic Braking and Viscous Damping
Diffferentially rotating stars can support significantly more mass in
equilibrium than nonrotating or uniformly rotating stars, according to general
relativity. The remnant of a binary neutron star merger may give rise to such a
``hypermassive'' object. While such a star may be dynamically stable against
gravitational collapse and bar formation, the radial stabilization due to
differential rotation is likely to be temporary. Magnetic braking and viscosity
combine to drive the star to uniform rotation, even if the seed magnetic field
and the viscosity are small. This process inevitably leads to delayed collapse,
which will be accompanied by a delayed gravitational wave burst and, possibly,
a gamma-ray burst. We provide a simple, Newtonian, MHD calculation of the
braking of differential rotation by magnetic fields and viscosity. The star is
idealized as a differentially rotating, infinite cylinder consisting of a
homogeneous, incompressible conducting gas. We solve analytically the simplest
case in which the gas has no viscosity and the star resides in an exterior
vacuum. We treat numerically cases in which the gas has internal viscosity and
the star is embedded in an exterior, low-density, conducting medium. Our
evolution calculations are presented to stimulate more realistic MHD
simulations in full 3+1 general relativity. They serve to identify some of the
key physical and numerical parameters, scaling behavior and competing
timescales that characterize this important process.Comment: 11 pages. To appear in ApJ (November 20, 2000
About the detection of gravitational wave bursts
Several filtering methods for the detection of gravitational wave bursts in
interferometric detectors are presented. These are simple and fast methods
which can act as online triggers. All methods are compared to matched filtering
with the help of a figure of merit based on the detection of supernovae signals
simulated by Zwerger and Muller.Comment: 5 pages, proceedings of GWDAW99 (Roma, Dec. 1999), to appear in Int.
J. Mod. Phys.
The bar-mode instability in differentially rotating neutron stars: Simulations in full general relativity
We study the dynamical stability against bar-mode deformation of rapidly
spinning neutron stars with differential rotation. We perform fully
relativistic 3D simulations of compact stars with , where is
the total gravitational mass and the equatorial circumferential radius. We
adopt an adiabatic equation of state with adiabatic index . As in
Newtonian theory, we find that stars above a critical value of (where is the rotational kinetic energy and the gravitational
binding energy) are dynamically unstable to bar formation. For our adopted
choices of stellar compaction and rotation profile, the critical value of
is , only slightly smaller than the
well-known Newtonian value for incompressible Maclaurin spheroids.
The critical value depends only very weakly on the degree of differential
rotation for the moderate range we surveyed. All unstable stars form bars on a
dynamical timescale. Models with sufficiently large subsequently form
spiral arms and eject mass, driving the remnant to a dynamically stable state.
Models with moderately large do not develop spiral
arms or eject mass but adjust to form dynamically stable ellipsoidal-like
configurations. If the bar-mode instability is triggered in supernovae collapse
or binary neutron star mergers, it could be a strong and observable source of
gravitational waves. We determine characteristic wave amplitudes and
frequencies.Comment: 17 pages, accepted for publication in AP
An approach toward the successful supernova explosion by physics of unstable nuclei
We study the explosion mechanism of collapse-driven supernovae by numerical
simulations with a new nuclear EOS based on unstable nuclei. We report new
results of simulations of general relativistic hydrodynamics together with the
Boltzmann neutrino-transport in spherical symmetry. We adopt the new data set
of relativistic EOS and the conventional set of EOS (Lattimer-Swesty EOS) to
examine the influence on dynamics of core-collapse, bounce and shock
propagation. We follow the behavior of stalled shock more than 500 ms after the
bounce and compare the evolutions of supernova core.Comment: 4 pages, 2 figures, contribution to Nuclei in the Cosmos 8, to appear
in Nucl. Phys.
Collapse and black hole formation in magnetized, differentially rotating neutron stars
The capacity to model magnetohydrodynamical (MHD) flows in dynamical,
strongly curved spacetimes significantly extends the reach of numerical
relativity in addressing many problems at the forefront of theoretical
astrophysics. We have developed and tested an evolution code for the coupled
Einstein-Maxwell-MHD equations which combines a BSSN solver with a high
resolution shock capturing scheme. As one application, we evolve magnetized,
differentially rotating neutron stars under the influence of a small seed
magnetic field. Of particular significance is the behavior found for
hypermassive neutron stars (HMNSs), which have rest masses greater the mass
limit allowed by uniform rotation for a given equation of state. The remnant of
a binary neutron star merger is likely to be a HMNS. We find that magnetic
braking and the magnetorotational instability lead to the collapse of HMNSs and
the formation of rotating black holes surrounded by massive, hot accretion tori
and collimated magnetic field lines. Such tori radiate strongly in neutrinos,
and the resulting neutrino-antineutrino annihilation (possibly in concert with
energy extraction by MHD effects) could provide enough energy to power
short-hard gamma-ray bursts. To explore the range of outcomes, we also evolve
differentially rotating neutron stars with lower masses and angular momenta
than the HMNS models. Instead of collapsing, the non-hypermassive models form
nearly uniformly rotating central objects which, in cases with significant
angular momentum, are surrounded by massive tori.Comment: Submitted to a special issue of Classical and Quantum Gravity based
around the New Frontiers in Numerical Relativity meeting at the Albert
Einstein Institute, Potsdam, July 17-21, 200
Inferring Core-Collapse Supernova Physics with Gravitational Waves
Stellar collapse and the subsequent development of a core-collapse supernova
explosion emit bursts of gravitational waves (GWs) that might be detected by
the advanced generation of laser interferometer gravitational-wave
observatories such as Advanced LIGO, Advanced Virgo, and LCGT. GW bursts from
core-collapse supernovae encode information on the intricate multi-dimensional
dynamics at work at the core of a dying massive star and may provide direct
evidence for the yet uncertain mechanism driving supernovae in massive stars.
Recent multi-dimensional simulations of core-collapse supernovae exploding via
the neutrino, magnetorotational, and acoustic explosion mechanisms have
predicted GW signals which have distinct structure in both the time and
frequency domains. Motivated by this, we describe a promising method for
determining the most likely explosion mechanism underlying a hypothetical GW
signal, based on Principal Component Analysis and Bayesian model selection.
Using simulated Advanced LIGO noise and assuming a single detector and linear
waveform polarization for simplicity, we demonstrate that our method can
distinguish magnetorotational explosions throughout the Milky Way (D <~ 10kpc)
and explosions driven by the neutrino and acoustic mechanisms to D <~ 2kpc.
Furthermore, we show that we can differentiate between models for rotating
accretion-induced collapse of massive white dwarfs and models of rotating iron
core collapse with high reliability out to several kpc.Comment: 22 pages, 9 figure
Electron Neutrino Pair Annihilation: A New Source for Muon and Tau Neutrinos in Supernovae
We show that in a supernova core the annihilation process nu_e nu_e-bar ->
nu_{mu,tau} nu_{mu,tau}-bar is always more important than the traditional
reaction e^+ e^- -> nu_{mu,tau} nu_{mu,tau}-bar as a source for muon and tau
neutrino pairs. We study the impact of the new process by means of a Monte
Carlo transport code with a static stellar background model and by means of a
self-consistent hydrodynamical simulation with Boltzmann neutrino transport.
Nucleon bremsstrahlung NN -> NN nu_{mu,tau} nu_{mu,tau}-bar is also included as
another important source term. Taking into account nu_e nu_e-bar -> nu_{mu,tau}
nu_{mu,tau}-bar increases the nu_mu and nu_tau luminosities by as much as 20%
while the spectra remain almost unaffected. In our hydrodynamical simulation
the shock was somewhat weakened. Elastic nu_{mu,tau} nu_e and nu_{mu,tau} nu_e
scattering is not negligible but less important than nu_{mu,tau} e^+ or e^-
scattering. Its influence on the nu_{mu,tau} fluxes and spectra is small after
all other processes have been included.Comment: 11 pages, 9 eps-figs, submitted to Ap
Mini Z' Burst from Relic Supernova Neutrinos and Late Neutrino Masses
In models in which neutrinos are light, due to a low scale of symmetry
breaking, additional light bosons are generically present. We show that the
interaction between diffuse relic supernova neutrinos (RSN) and the cosmic
background neutrinos, via exchange of these light scalars, can result in a
dramatic change of the supernova (SN) neutrinos flux. Measurement of this
effect with current or future experiments can provide a spectacular direct
evidence for the low scale models. We demonstrate how the observation of
neutrinos from SN1987A constrains the symmetry breaking scale of the above
models. We also discuss how current and future experiments may confirm or
further constrain the above models, either by detecting the ``accumulative
resonance'' that diffuse RSN go through or via a large suppression of the flux
of neutrinos from nearby < O(Mpc) SN bursts.Comment: 24 pages, 8 figures, version to be published in JHE
- …
