6 research outputs found

    Two oxidation pathways of bioactive flavonol rhamnazin under ambient conditions

    No full text
    Two pathways of the oxidation mechanism of rhamnazin under ambient conditions are proposed. The redox potential of rhamnazin strongly depends on the presence of dissociation forms in solution. In situ spectroelectrochemistry and identification of degradation products by HPLC-DAD and HPLC-ESI-MS/MS confirmed the presence of fast subsequent chemical reactions following the electron transfer. As demonstrated, strict anaerobic conditions have to be preserved in studies of antioxidant properties and of its pharmacological efficiency. In the absence of oxygen, 2,4-dihydroxy-2-(4′-hydroxy- 3′-methoxybenzoyl)-6-methoxy-benzofuran-3(2H)-one was identified as the only oxidation product

    THE INFLUENCE OF THE HOST-GUEST INTERACTION ON THE OXIDATION OF NATURAL FLAVONOID DYES

    No full text
    The influence of the molecular cavity protection on degradation processes of bioorganic compounds quercetin and luteolin used as the original dyes in old tapestries was studied. The degradation processes were studied by electrochemical methods in aqueous media. The products of the exhaustive electrolysis were separated and identified by GC-MS analysis. Cyclic voltammetry characteristics indicate that the inclusion complex is formed. The inclusion affects the redox potentials of both oxidation waves related to the different dissociation forms of the flavonoid molecule. It was shown that decomposition products formed by the oxidation of quercetin are stabilized in the cavity of β-cyclodextrin, including the main oxidation product 2(3′,4′-dihydroxybenzoyl)-2,4,6-trihydroxybenzofuran-3(2H)-one. The formation of the 1:1 inclusion complex of luteolin with β-cyclodextrin is supported by the enhancement of fluorescence intensity. In the case of quercetin, a decrease of fluorescence intensity occurs when 1:1 inclusion complex with β-cyclodextrin is formed

    Exploring the oxidation and iron binding profile of a cyclodextrin encapsulated quercetin complex unveiled a controlled complex dissociation through a chemical stimulus

    No full text
    Background: Flavonoids possess a rich polypharmacological profile and their biological role is linked to their oxidation state protecting DNA from oxidative stress damage. However, their bioavailability is hampered due to their poor aqueous solubility. This can be surpassed through encapsulation to supramolecular carriers as cyclodextrin (CD). A quercetin- 2HP-β-CD complex has been formerly reported by us. However, once the flavonoid is in its 2HP-β-CD encapsulated state its oxidation potential, its decomplexation mechanism, its potential to protect DNA damage from oxidative stress remained elusive. To unveil this, an array of biophysical techniques was used. Methods: The quercetin-2HP-β-CD complex was evaluated through solubility and dissolution experiments, electrochemical and spectroelectrochemical studies (Cyclic Voltammetry), UV–Vis spectroscopy, HPLC-ESI-MS/MS and HPLC-DAD, fluorescence spectroscopy, NMR Spectroscopy, theoretical calculations (density functional theory (DFT)) and biological evaluation of the protection offered against H2O2-induced DNA damage. Results: Encapsulation of quercetin inside the supramolecule's cavity enhanced its solubility and retained its oxidation profile. Although the protective ability of the quercetin-2HP-β-CD complex against H2O2was diminished, iron serves as a chemical stimulus to dissociate the complex and release quercetin. Conclusions: We found that in a quercetin-2HP-β-CD inclusion complex quercetin retains its oxidation profile similarly to its native state, while iron can operate as a chemical stimulus to release quercetin from its host cavity. General significance: The oxidation profile of a natural product once it is encapsulated in a supramolecular carrier was unveiled as also it was discovered that decomplexation can be triggered by a chemical stimilus

    Ferrocenyl helquats: unusual chiral organometallic nonlinear optical chromophores

    No full text
    Three new dipolar cations have been synthesised, containing ferrocenyl (Fc) electron donor groups attached to helquat (Hq) acceptors. These organometallic Hq derivatives have been characterised as their TfO- salts by using various techniques including NMR and electronic absorption spectroscopies and electrochemical measurements. UV-vis spectra show multiple intense low energy absorptions attributable to intramolecular charge-transfer (ICT) excitations. Each compound displays a reversible Fc+/0 redox process, together with two reversible one-electron reductions of the Hq fragment. Molecular quadratic nonlinear optical (NLO) responses have been determined by using hyper-Rayleigh scattering at 1064 nm, and Stark (electroabsorption) spectroscopic studies on the visible absorption bands. The obtained first hyperpolarizabilities β are moderate, consistent with the relatively short π-conjugation lengths between the Fc and attached pyridinium group. A single-crystal X-ray structure has been solved for one of the complexes as its PF6- salt, revealing a centrosymmetric packing in the triclinic space group P1[combining macron]. Density functional theory (DFT) and time-dependent DFT calculations indicate that the lowest energy absorption bands have mainly metal-to-ligand charge-transfer character. The donor orbitals involved in the electronic transitions forming the next lowest energy ICT band also have substantial contributions from the Fe atom. Good agreement between the simulated and experimental UV-vis absorption spectra is achieved by using the PBE0 functional with the 6-311++G(d)/LANL2DZ mixed basis set, and the theoretical β values are reasonably large. Oxidation of the Fc unit is predicted to cause the βtot value to decrease by more than 80% in one of the complexes.crosscheck: This document is CrossCheck deposited related_data: Supplementary Information related_data: Crystal Structure Data identifier: Benjamin J. Coe (ORCID) copyright_licence: The Royal Society of Chemistry has an exclusive publication licence for this journal history: Received 16 November 2016; Accepted 19 December 2016; Accepted Manuscript published 20 December 2016; Advance Article published 4 January 2017; Version of Record published 24 January 2017status: publishe
    corecore