7,283 research outputs found
Field Screening of Lentil Genotypes Against Aphid Infestation in Inner Tarai of Nepal
Twenty lentil (Lens culinaris Medik) genotypes received from Grain Legumes Research Program, Khajura, Banke were screened for relative tolerance against aphid (Aphis craccivora Koch.) at the research field of National Maize Research Program, Rampur, Chitwan during winter seasons of two consecutive years 2016 and 2017. The design of the experiment was Randomized Complete Block having three replications. The unit plot size was 4m × 1 m with 25cm row to row spacing and continue plant to plant spacing was maintained and net harvested plot was 4 square meters. The recommended dose of fertilizer was 20:40:20 N:P2O5:K2O kg/ha and seed rate 30 kg/ha. Insect data were collected based on aphid population found at apical twigs (10 cm) per plant and scoring was done during flowering and pod formation stage. The grain yield was recorded. All screened genotypes differed significantly (p<0.05) on aphid population and grain yield. Genotypes, ILL 9924, RL 83, ILL 10856, ILL 6458 and RL 67 were less susceptible with higher grain yield. These results have important implications for the development of aphid tolerant high yielding lentil variety in inner Tarai of Nepal
Growth and Characterization of Fe0.95Se0.6Te0.4 Single Crystal
In this paper we present the single crystal growth of Fe0.95Se0.6Te0.4 high
TC superconducting sample by the modified Bridgman technique. The x-ray
diffraction pattern shows the single crystal nature of the sample, as only
(00l) peaks are detectable. The stoichiometric composition has been verified by
energy dispersive x-ray analysis. The superconducting transition temperature at
14 K was confirmed through DC magnetization (ZFC-FC) and resistivity
measurements. By analyzing the isothermal M-H curves, we determined the value
of H_c1 (0) ~360 Oe by extrapolating the data. The temperature coefficient of
resistivity obtained using the power law fitting was found to be 0.6. The
obtained Raman spectra at room temperature can be interpreted with the
tetragonal crystal structure and space group P4/nmm.Comment: conference pape
Structural and Magnetic Characterizations of Co2FeGa/SiO2 Nanoparticles Prepared via Chemical Route
We report the synthesis of Co2FeGa/SiO2 nanoparticles by sol-gel method and
characterization using x-ray diffraction (XRD), transmission electron
microscopy (TEM) and magnetic measurements. The Rietveld refinements of XRD
data with space group Fm-3m clearly show the formation of A2 disorder single
phase and the lattice constant is found to be 5.738 {\AA}. The
energy-dispersive x-ray spectroscopy (EDX) confirm the elemental composition
close the desired values. The value of coercivity is found to be around 283 Oe
and 126 Oe, measured at 10 K and 300 K, respectively. We observed the
saturation magnetization significantly lower than expected from Slater-Pauling
rule. This decrease in the magnetic moment might be due to the presence of
amorphous SiO2 during the synthesis process. A large content of small size SiO2
particles along with Co2FeGa nanoparticles are also found in TEM study.Comment: 4 pages, AIP conferenc
Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroantimonate as a Novel (One-Electron) Oxidant
Triethyloxonium hexachloroantimonate [Et3O+SbCl6-] is a selective oxidant of aromatic donors (ArH), and it allows the facile preparation and isolation of crystalline paramagnetic salts [ArH+•, SbCl6-] for the X-ray structure determination of various aromatic cation radicals. The mechanistic relationship between the Meerwein salt [Et3O+SbCl6-] and the pure Lewis acid oxidant SbCl5 is based on a prior ethyl transfer from oxygen to chlorine within the ion pair
On the exponential metric increasing
The metric increasing property of the exponential map is known to be equivalent to the fact that the set of positive definite matrices is a Riemannian manifold of nonpositive curvature. We show that this property is an easy consequence of the logarithmic-geometric mean inequality for positive numbers. Operator versions of this inequality lead to a generalisation of the exponential metric increasing property to all Schatten-von Neumann norms.
FHBC, a Hexa‐\u3cem\u3eperi\u3c/em\u3e‐hexabenzocoronene–Fluorene Hybrid: A Platform for Highly Soluble, Easily Functionalizable HBCs with an Expanded Graphitic Core
Materials based upon hexa‐peri‐hexabenzocoronenes (HBCs) show significant promise in a variety of photovoltaic applications. There remains the need, however, for a soluble, versatile, HBC‐based platform, which can be tailored by incorporation of electroactive groups or groups that can prompt self‐assembly. The synthesis of a HBC–fluorene hybrid is presented that contains an expanded graphitic core that is highly soluble, resists aggregation, and can be readily functionalized at its vertices. This new HBC platform can be tailored to incorporate six electroactive groups at its vertices, as exemplified by a facile synthesis of a representative hexaaryl derivative of FHBC. Synthesis of new FHBC derivatives, containing electroactive functional groups that can allow controlled self‐assembly, may serve as potential long‐range charge‐transfer materials for photovoltaic applications
Disproportionation and Structural Changes of Tetraarylethylene Donors upon Successive Oxidation to Cation Radicals and to Dications
The stepwise (one-electron) chemical oxidation of the tetraphenylethylene donor and its substituted analogues (D) can be carried out by electron exchange with aromatic cations or antimony(V) oxidants to selectively afford the cation radical (D+•) initially and then the dication (D2+). The ready interchange of the latter establishes the facile disproportionation (i.e., 2D+• ⇌ D2+ + D) that was originally examined by only transient electrochemical techniques. The successful isolations of the crystalline salts of the tetraanisylethylene cation radical (1+•) as well as the tetraanisylethylene dication (12+) allow X-ray diffraction analysis (for the first time) to quantify the serial changes in the molecular structure upon successive oxidations. Five structural parameters (d, l, θ, φ, and q) are identified as quantitative measures of changes in bond (CαCβ, Cαanisyl) lengths, dihedral (CαCβ)/torsional (anisyl) angles, and quinoidal (anisyl) distortion attendant upon the removal of first one-electron and then another electron from the tetraanisylethylene framework. The linear variation of all five parameters in Chart 3 point to a strongly coupled relaxation of tetraanisylethylene (involving simultaneous changes of d, l, θ, φ, and q) to a severely twisted dication. Most noteworthy is the structure of the cation radical 1+• with d, l, θ, φ, and q values that are exactly one-half those of the dication. The complex molecular changes accompanying the transformation: D → D+• → D2+ bear directly on the donor properties and the disproportionation processes of various tetraarylethylenes
- …
