4,882 research outputs found
A radiating dyon solution
We give a non-static exact solution of the Einstein-Maxwell equations (with
null fluid), which is a non-static magnetic charge generalization to the
Bonnor-Vaidya solution and describes the gravitational and electromagnetic
fields of a nonrotating massive radiating dyon. In addition, using the
energy-momentum pseudotensors of Einstein and Landau and Lifshitz we obtain the
energy, momentum, and power output of the radiating dyon and find that both
prescriptions give the same result.Comment: 9 pages, LaTe
Statistics and UV-IR Mixing with Twisted Poincare Invariance
We elaborate on the role of quantum statistics in twisted Poincare invariant
theories. It is shown that, in order to have twisted Poincare group as the
symmetry of a quantum theory, statistics must be twisted. It is also confirmed
that the removal of UV-IR mixing (in the absence of gauge fields) in such
theories is a natural consequence.Comment: 13 pages, LaTeX; typos correcte
Spontaneous Lorentz Violation: The Case of Infrared QED
It is by now clear that infrared sector of QED has an intriguingly complex
structure. Based on earlier pioneering works on this subject, two of us
recently proposed a simple modification of QED by constructing a generalization
of the charge group of QED to the "Sky" group incorporating the known
spontaneous Lorentz violation due to infrared photons, but still compatible in
particular with locality. There it was shown that the "Sky" group is generated
by the algebra of angle dependent charges and a study of its superselection
sectors has revealed a manifest description of spontaneous breaking of Lorentz
symmetry. We further elaborate this approach here and investigate in some
detail the properties of charged particles dressed by the infrared photons. We
find that Lorentz violation due to soft photons may be manifestly codified in
an angle dependent fermion mass modifying therefore the fermion dispersion
relations. The fact that the masses of the charged particles are not Lorentz
invariant affects their spin content too.Time dilation formulae for decays
should also get corrections. We speculate that these effects could be measured
possibly in muon decay experiments.Comment: 18+1 pages, revised version, expanded discussion in section 5
The Tolman-Bondi--Vaidya Spacetime: matching timelike dust to null dust
The Tolman-Bondi and Vaidya solutions are two solutions to Einstein equations
which describe dust particles and null fluid, respectively. We show that it is
possible to match the two solutions in one single spacetime, the
Tolman-Bondi--Vaidya spacetime. The new spacetime is divided by a null surface
with Tolman-Bondi dust on one side and Vaidya fluid on the other side. The
differentiability of the spacetime is discussed. By constructing a specific
solution, we show that the metric across the null surface can be at least
and the stress-energy tensor is continuous.Comment: 5 pages, no figur
Non-spherical collapse of a two fluid star
We obtain the analogue of collapsing Vaidya-like solution to include both a
null fluid and a string fluid, with a linear equation of state (), in non-spherical (plane symmetric and cylindrically symmetric) anti-de
Sitter space-timess. It turns out that the non-spherical collapse of two fluid
in anti-de Sitter space-times, in accordance with cosmic censorship, proceed to
form black holes, i.e., on naked singularity ever forms, violating hoop
conjecture.Comment: 7 pages, RevTeX 4, minor correction
Non-adiabatic radiative collapse of a relativistic star under different initial conditions
We examine the role of space-time geometry in the non-adiabatic collapse of a
star dissipating energy in the form of radial heat flow, studying its evolution
under different initial conditions. The collapse of a star with interior
comprising of a homogeneous perfect fluid is compared with that of a star
filled with inhomogeneous imperfect fluid with anisotropic pressure. Both the
configurations are spherically symmetric, however, in the latter case, the
physical space of the configurations is assumed to be
inhomogeneous endowed with spheroidal or pseudo-spheroidal geometry. It is
observed that as long as the collapse is shear-free, its evolution depends only
on the mass and size of the star at the onset of collapse.Comment: To appear in Pramana- j. of physic
Entropy and Correlation Functions of a Driven Quantum Spin Chain
We present an exact solution for a quantum spin chain driven through its
critical points. Our approach is based on a many-body generalization of the
Landau-Zener transition theory, applied to fermionized spin Hamiltonian. The
resulting nonequilibrium state of the system, while being a pure quantum state,
has local properties of a mixed state characterized by finite entropy density
associated with Kibble-Zurek defects. The entropy, as well as the finite spin
correlation length, are functions of the rate of sweep through the critical
point. We analyze the anisotropic XY spin 1/2 model evolved with a full
many-body evolution operator. With the help of Toeplitz determinants calculus,
we obtain an exact form of correlation functions. The properties of the evolved
system undergo an abrupt change at a certain critical sweep rate, signaling
formation of ordered domains. We link this phenomenon to the behavior of
complex singularities of the Toeplitz generating function.Comment: 16 pgs, 7 fg
LAPSES: A Recipe for High-Performance Adaptive Router Design
Earlier research has shown that adaptive routing can help in improving network performance. However, it has not received adequate attention in commercial routers mainly due to the additional hardware complexity, and the perceived cost and performance degradation that may result from this complexity. These concerns can be mitigated if one can design a cost-effective router that can support adaptive routing. This paper proposes a three step recipe — Look-Ahead routing, intelligent Path Selection, and an Economic Storage implementation, called the LAPSES approach — for cost-effective high performance pipelined adaptive router design. The first step, look-ahead routing, reduces a pipeline stage in the router by making table lookup and arbitration concurrent. Next, three new traffic-sensitive path selection heuristics (LRU, LFU and MAX-CREDIT) are proposed to select one of the available alternate paths. Finally, two techniques for reducing routing table size of the adaptive router are presented. These are called meta-table routing and economical storage. The proposed economical storage needs a routing table with only 9 and 27 entries for two and three dimensional meshes, respectively. All these design ideas are evaluated on a (16 16) mesh network via simulation. A fully adaptive algorithm and various traffic patterns are used to examine the performance benefits. Performance results show that the look-ahead design as well as the path selection heuristics boost network performance, while the economical storage approach turns out to be an ideal choice in comparison to full-table and meta-table options. We believe the router resulting from these three design enhancements can make adaptive routing a viable choice for interconnects.
- …
