46,279 research outputs found

    Exotic Meson Decay Widths using Lattice QCD

    Get PDF
    A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is presented for the channel h->pi+a1. This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and pi+a1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.

    Determining crustal strain rates with a spaceborne geodynamics ranging system. 2: Station coordinate analysis

    Get PDF
    The use of a spaceborne geodynamics ranging system for determining crustal strain rates is analyzed. The use of site coordinates rather than intersite baseline distances for the strain rate determinations is emphasized. After discussing the analytical techniques which are to be employed, numerical results are presented which suggest that the use of site coordinates would result in a 20-70% improvement in the precision of the deduced values of straining. Precision of a few parts in 10 to the 9th power would be achievable with simple geometrics and a decade or two of measurements; precisions of a few parts in 10 to the 8th power would be achievable in a few years. A consideration of possible correlations among the derived target site coordinates leads to the conclusion that, with the proper choice of coordinate systems, the correlations can be made small and non-detrimental to the strain rate determinations

    Quantifying fusion born ion populations in magnetically confined plasmas using ion cyclotron emission

    Get PDF
    Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the fusion born alpha-particle population in magnetically confined plasmas. Pioneering observations from JET and TFTR found that ICE intensity PICEP_{ICE} scales approximately linearly with the measured neutron flux from fusion reactions, and with the inferred concentration, nα/nin_\alpha/n_i, of fusion-born alpha-particles confined within the plasma. We present fully nonlinear self-consistent kinetic simulations that reproduce this scaling for the first time. This resolves a longstanding question in the physics of fusion alpha-particle confinement and stability in MCF plasmas. It confirms the magnetoacoustic cyclotron instability (MCI) as the likely emission mechanism and greatly strengthens the basis for diagnostic exploitation of ICE in future burning plasmas

    Hybrid Exotic Meson Decay Width

    Full text link
    We present results of a decay width calculation for a hybrid exotic meson(h, JPC=1-+) in the decay channel h to pi+a1. This calculation uses quenched lattice QCD and Luescher's finite box method. Operators for the h and pi+a1 states are used in a correlation matrix which was expanded by varying the smearing and fuzzing levels at source and sink points. Scattering phase shifts for a discrete set of relative pi+a1 momenta are determined using eigenvalues of the correlation matrix and formulae derived by Luescher. The phase shift data is very sparse, but fits to a Breit-Wigner model are made, resulting in a decay width of about 80 MeV.Comment: 8 pages, 5 figures, APS revtex4 documentclass, contribution to Lattice 200

    Testing a Simplified Version of Einstein's Equations for Numerical Relativity

    Get PDF
    Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson has proposed a simpler but approximate scheme for systems near equilibrium, like binary neutron stars. We test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial that the approximation work well if we are to believe its predictions for more complicated systems like binaries. Our results are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107

    Introduction

    Get PDF
    This is the post print version of the chapter - Copyright @ 2003 The editorsThis book is about surrogacy and, more specifically, surrogate motherhood. It is a collection of essays that aims to provide a contemporary and international picture of a practice, traceable to ancient times, devised to solve the problem of childlessness. The collection, which explores surrogacy from a variety of perspectives including law, policy, medicine and psychology, is timely. For although there is nothing new in the notion that a woman might bear a child for someone else, there is some evidence that the incidence of surrogacy is increasing and technology has developed to make ever more complex arrangements possible

    Simplifying Random Satisfiability Problem by Removing Frustrating Interactions

    Full text link
    How can we remove some interactions in a constraint satisfaction problem (CSP) such that it still remains satisfiable? In this paper we study a modified survey propagation algorithm that enables us to address this question for a prototypical CSP, i.e. random K-satisfiability problem. The average number of removed interactions is controlled by a tuning parameter in the algorithm. If the original problem is satisfiable then we are able to construct satisfiable subproblems ranging from the original one to a minimal one with minimum possible number of interactions. The minimal satisfiable subproblems will provide directly the solutions of the original problem.Comment: 21 pages, 16 figure

    Thermal barrier coating life prediction model development

    Get PDF
    This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life
    corecore