46,279 research outputs found
Exotic Meson Decay Widths using Lattice QCD
A decay width calculation for a hybrid exotic meson h, with JPC=1-+, is
presented for the channel h->pi+a1. This quenched lattice QCD simulation
employs Luescher's finite box method. Operators coupling to the h and pi+a1
states are used at various levels of smearing and fuzzing, and at four quark
masses. Eigenvalues of the corresponding correlation matrices yield energy
spectra that determine scattering phase shifts for a discrete set of relative
pi+a1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner
model are attempted, resulting in a decay width of about 60 MeV when averaged
over two lattice sizes.Comment: 9 pages, 8 figures, RevTex4, minor change to Fig.
Determining crustal strain rates with a spaceborne geodynamics ranging system. 2: Station coordinate analysis
The use of a spaceborne geodynamics ranging system for determining crustal strain rates is analyzed. The use of site coordinates rather than intersite baseline distances for the strain rate determinations is emphasized. After discussing the analytical techniques which are to be employed, numerical results are presented which suggest that the use of site coordinates would result in a 20-70% improvement in the precision of the deduced values of straining. Precision of a few parts in 10 to the 9th power would be achievable with simple geometrics and a decade or two of measurements; precisions of a few parts in 10 to the 8th power would be achievable in a few years. A consideration of possible correlations among the derived target site coordinates leads to the conclusion that, with the proper choice of coordinate systems, the correlations can be made small and non-detrimental to the strain rate determinations
Quantifying fusion born ion populations in magnetically confined plasmas using ion cyclotron emission
Ion cyclotron emission (ICE) offers unique promise as a diagnostic of the
fusion born alpha-particle population in magnetically confined plasmas.
Pioneering observations from JET and TFTR found that ICE intensity
scales approximately linearly with the measured neutron flux from fusion
reactions, and with the inferred concentration, , of fusion-born
alpha-particles confined within the plasma. We present fully nonlinear
self-consistent kinetic simulations that reproduce this scaling for the first
time. This resolves a longstanding question in the physics of fusion
alpha-particle confinement and stability in MCF plasmas. It confirms the
magnetoacoustic cyclotron instability (MCI) as the likely emission mechanism
and greatly strengthens the basis for diagnostic exploitation of ICE in future
burning plasmas
Hybrid Exotic Meson Decay Width
We present results of a decay width calculation for a hybrid exotic meson(h,
JPC=1-+) in the decay channel h to pi+a1. This calculation uses quenched
lattice QCD and Luescher's finite box method. Operators for the h and pi+a1
states are used in a correlation matrix which was expanded by varying the
smearing and fuzzing levels at source and sink points. Scattering phase shifts
for a discrete set of relative pi+a1 momenta are determined using eigenvalues
of the correlation matrix and formulae derived by Luescher. The phase shift
data is very sparse, but fits to a Breit-Wigner model are made, resulting in a
decay width of about 80 MeV.Comment: 8 pages, 5 figures, APS revtex4 documentclass, contribution to
Lattice 200
Testing a Simplified Version of Einstein's Equations for Numerical Relativity
Solving dynamical problems in general relativity requires the full machinery
of numerical relativity. Wilson has proposed a simpler but approximate scheme
for systems near equilibrium, like binary neutron stars. We test the scheme on
isolated, rapidly rotating, relativistic stars. Since these objects are in
equilibrium, it is crucial that the approximation work well if we are to
believe its predictions for more complicated systems like binaries. Our results
are very encouraging.Comment: 9 pages (RevTeX 3.0 with 6 uuencoded figures), CRSR-107
Introduction
This is the post print version of the chapter - Copyright @ 2003 The editorsThis book is about surrogacy and, more specifically, surrogate motherhood. It is a collection of essays that aims to provide a contemporary and international picture of a practice, traceable to ancient times, devised to solve the problem of childlessness. The collection, which explores surrogacy from a variety of perspectives including law, policy, medicine and psychology, is timely. For although there is nothing new in the notion that a woman might bear a child for someone else, there is some evidence that the incidence of surrogacy is increasing and technology has developed to make ever more complex arrangements possible
Simplifying Random Satisfiability Problem by Removing Frustrating Interactions
How can we remove some interactions in a constraint satisfaction problem
(CSP) such that it still remains satisfiable? In this paper we study a modified
survey propagation algorithm that enables us to address this question for a
prototypical CSP, i.e. random K-satisfiability problem. The average number of
removed interactions is controlled by a tuning parameter in the algorithm. If
the original problem is satisfiable then we are able to construct satisfiable
subproblems ranging from the original one to a minimal one with minimum
possible number of interactions. The minimal satisfiable subproblems will
provide directly the solutions of the original problem.Comment: 21 pages, 16 figure
Thermal barrier coating life prediction model development
This report describes work performed to determine the predominat modes of degradation of a plasma sprayed thermal barrier coating system and to develop and verify life prediction models accounting for these degradation modes. The primary TBC system consisted of a low pressure plasma sprayed NiCrAlY bond coat, an air plasma sprayed ZrO2-Y2O3 top coat, and a Rene' 80 substrate. The work was divided into 3 technical tasks. The primary failure mode to be addressed was loss of the zirconia layer through spalling. Experiments showed that oxidation of the bond coat is a significant contributor to coating failure. It was evident from the test results that the species of oxide scale initially formed on the bond coat plays a role in coating degradation and failure. It was also shown that elevated temperature creep of the bond coat plays a role in coating failure. An empirical model was developed for predicting the test life of specimens with selected coating, specimen, and test condition variations. In the second task, a coating life prediction model was developed based on the data from Task 1 experiments, results from thermomechanical experiments performed as part of Task 2, and finite element analyses of the TBC system during thermal cycles. The third and final task attempted to verify the validity of the model developed in Task 2. This was done by using the model to predict the test lives of several coating variations and specimen geometries, then comparing these predicted lives to experimentally determined test lives. It was found that the model correctly predicts trends, but that additional refinement is needed to accurately predict coating life
- …
