10,176 research outputs found
The Effects of Massive Substructures on Image Multiplicities in Gravitati onal Lenses
Surveys for gravitational lens systems have typically found a significantly
larger fraction of lenses with four (or more) images than are predicted by
standard ellipsoidal lens models (50% versus 25-30%). We show that including
the effects of smaller satellite galaxies, with an abundance normalized by the
observations, significantly increases the expected number of systems with more
than two images and largely explains the discrepancy. The effect is dominated
by satellites with ~20% the luminosity of the primary lens, in rough agreement
with the typical luminosities of the observed satellites. We find that the lens
systems with satellites cannot, however, be dropped from estimates of the
cosmological model based on gravitational lens statistics without significantly
biasing the results.Comment: 23 pages, 7 figures, more discussion of sis vs sie and inclusion of
uncorrelated contribution
Acute complete heart block in dogs
A study has been conducted immediately and up to 18 days after the surgical production of complete heart block in dogs. Immediately after surgery cardiac output, coronary flow, and mean arterial pressure were reduced in rough proportion to the degree of bradycardia. In time, these measures began to return toward preoperative levels. Paralleling the diminished left ventricular work was a diminished left ventricular oxygen consumption with little consequent change in myocardial efficiency. Small rises were detected in central venous pressure. At autopsy, the only unequivocal abnormality was myocardial hypertrophy which became measurable between 2 and 18 days after operation
Ground states and formal duality relations in the Gaussian core model
We study dimensional trends in ground states for soft-matter systems.
Specifically, using a high-dimensional version of Parrinello-Rahman dynamics,
we investigate the behavior of the Gaussian core model in up to eight
dimensions. The results include unexpected geometric structures, with
surprising anisotropy as well as formal duality relations. These duality
relations suggest that the Gaussian core model possesses unexplored symmetries,
and they have implications for a broad range of soft-core potentials.Comment: 7 pages, 1 figure, appeared in Physical Review E (http://pre.aps.org
Local Thermal Equilibrium in Quantum Field Theory on Flat and Curved Spacetimes
The existence of local thermal equilibrium (LTE) states for quantum field
theory in the sense of Buchholz, Ojima and Roos is discussed in a
model-independent setting. It is shown that for spaces of finitely many
independent thermal observables there always exist states which are in LTE in
any compact region of Minkowski spacetime. Furthermore, LTE states in curved
spacetime are discussed and it is observed that the original definition of LTE
on curved backgrounds given by Buchholz and Schlemmer needs to be modified.
Under an assumption related to certain unboundedness properties of the
pointlike thermal observables, existence of states which are in LTE at a given
point in curved spacetime is established. The assumption is discussed for the
sets of thermal observables for the free scalar field considered by Schlemmer
and Verch.Comment: 16 pages, some minor changes and clarifications; section 4 has been
shortened as some unnecessary constructions have been remove
Submillimeter satellite radiometer first semiannual engineering progress report
Development of 560 GHz fourth harmonic mixer and 140 GHz third harmonic generator for use in radiomete
Heat Conduction and Magnetic Phase Behavior in Electron-Doped Ca_{1-x} La_x MnO_3(0 <= x <= 0.2)
Measurements of thermal conductivity (kappa) vs temperature are reported for
a series of Ca_{1-x} La_x MnO_3(0 <= x <= 0.2) specimens. For the undoped
(x=0), G-type antiferromagnetic compound a large enhancement of kappa below the
Neel temperature (T_N ~ 125 K) indicates a strong coupling of heat-carrying
phonons to the spin system. This enhancement exhibits a nonmonotonic behavior
with increasing x and correlates remarkably well with the small ferromagnetic
component of the magnetization reported previously [Neumeier and Cohn, Phys.
Rev. B 61 14319 (2000).] Magnetoelastic polaron formation appears to underly
the behavior of kappa and the magnetization at x <= 0.02.Comment: submitted to PRB; 4 pp., 4 Fig.'s, RevTex
Dimers on two-dimensional lattices
We consider close-packed dimers, or perfect matchings, on two-dimensional
regular lattices. We review known results and derive new expressions for the
free energy, entropy, and the molecular freedom of dimers for a number of
lattices including the simple-quartic (4^4), honeycomb (6^3), triangular (3^6),
kagome (3.6.3.6), 3-12 (3.12^2) and its dual [3.12^2], and 4-8 (4.8^2) and its
dual Union Jack [4.8^2] Archimedean tilings. The occurrence and nature of phase
transitions are also analyzed and discussed.Comment: Typos corrections in Eqs. (28), (32) and (43
Cross-correlating the Thermal Sunyaev-Zel'dovich Effect and the Distribution of Galaxy Clusters
We present the analytical formulas, derived based on the halo model, to
compute the cross-correlation between the thermal Sunyaev-Zel'dovich (SZ)
effect and the distribution of galaxy clusters. By binning the clusters
according to their redshifts and masses, this cross-correlation, the so-called
stacked SZ signal, reveals the average SZ profile around the clusters. The
stacked SZ signal is obtainable from a joint analysis of an
arcminute-resolution cosmic microwave background (CMB) experiment and an
overlapping optical survey, which allows for detection of the SZ signals for
clusters whose masses are below the individual cluster detection threshold. We
derive the error covariance matrix for measuring the stacked SZ signal, and
then forecast for its detection from ongoing and forthcoming combined
CMB-optical surveys. We find that, over a wide range of mass and redshift, the
stacked SZ signal can be detected with a significant signal to noise ratio
(total S/N \gsim 10), whose value peaks for the clusters with intermediate
masses and redshifts. Our calculation also shows that the stacking method
allows for probing the clusters' SZ profiles over a wide range of scales, even
out to projected radii as large as the virial radius, thereby providing a
promising way to study gas physics at the outskirts of galaxy clusters.Comment: 11 pages, 6 figures, 3 tables, minor revisions reflect PRD published
versio
- …
