633 research outputs found

    Predicting outcome in adults with status epilepticus

    Get PDF
    Status epilepticus (SE) is a life-threatening state of persisting or repetitive seizure activity with often permanent altered level of consciousness. Despite its high morbidity and mortality there is no consensus about the best strategy to treat specific forms of SE. The compromise between the danger related to untreated and persistent seizure activity and the possible damage induced by unnecessary aggressive treatments is challenging. Knowledge about the determinants and reliable prediction models of outcome early in the course of SE is fundamental for rapid treatment modulation and for planning the level of monitoring. This review compiles the current evidence for outcome prediction based on clinical determinants in adult SE patient

    Dimensional reduction by pressure in the magnetic framework material CuF2_{2}(D2_{2}O)2_{2}pyz: from spin-wave to spinon excitations

    Full text link
    Metal organic magnets have enormous potential to host a variety of electronic and magnetic phases that originate from a strong interplay between the spin, orbital and lattice degrees of freedom. We control this interplay in the quantum magnet CuF2_2(D2_2O)2_2pyz by using high pressure to drive the system through a structural and magnetic phase transition. Using neutron scattering, we show that the low pressure state, which hosts a two-dimensional square lattice with spin-wave excitations and a dominant exchange coupling of 0.89 meV, transforms at high pressure into a one-dimensional spin-chain hallmarked by a spinon continuum and a reduced exchange interaction of 0.43 meV. This direct microscopic observation of a magnetic dimensional crossover as a function of pressure opens up new possibilities for studying the evolution of fractionalised excitations in low dimensional quantum magnets and eventually pressure-controlled metal--insulator transitions

    Role of multiple subband renormalization in the electronic transport of correlated oxide superlattices

    Full text link
    Metallic behavior of band-insulator/ Mott-insulator interfaces was observed in artificial perovskite superlattices such as in nanoscale SrTiO3/LaTiO3 multilayers. Applying a semiclassical perspective to the parallel electronic transport we identify two major ingredients relevant for such systems: i) the quantum confinement of the conduction electrons (superlattice modulation) leads to a complex, quasi-two dimensional subband structure with both hole- and electron-like Fermi surfaces. ii) strong electron-electron interaction requires a substantial renormalization of the quasi-particle dispersion. We characterize this renormalization by two sets of parameters, namely, the quasi-particle weight and the induced particle-hole asymmetry of each partially filled subband. In our study, the quasi-particle dispersion is calculated self-consistently as function of microscopic parameters using the slave-boson mean-field approximation introduced by Kotliar and Ruckenstein. We discuss the consequences of strong local correlations on the normal-state free-carrier response in the optical conductivity and on the thermoelectric effects.Comment: 11 pages, 4 figure

    Quantum and classical criticality in a dimerized quantum antiferromagnet

    Get PDF
    A quantum critical point (QCP) is a singularity in the phase diagram arising due to quantum mechanical fluctuations. The exotic properties of some of the most enigmatic physical systems, including unconventional metals and superconductors, quantum magnets, and ultracold atomic condensates, have been related to the importance of the critical quantum and thermal fluctuations near such a point. However, direct and continuous control of these fluctuations has been difficult to realize, and complete thermodynamic and spectroscopic information is required to disentangle the effects of quantum and classical physics around a QCP. Here we achieve this control in a high-pressure, high-resolution neutron scattering experiment on the quantum dimer material TlCuCl3. By measuring the magnetic excitation spectrum across the entire quantum critical phase diagram, we illustrate the similarities between quantum and thermal melting of magnetic order. We prove the critical nature of the unconventional longitudinal ("Higgs") mode of the ordered phase by damping it thermally. We demonstrate the development of two types of criticality, quantum and classical, and use their static and dynamic scaling properties to conclude that quantum and thermal fluctuations can behave largely independently near a QCP.Comment: 6 pages, 4 figures. Original version, published version available from Nature Physics websit

    Slave-boson mean-field theory of the Mott transition in the two-band Hubbard model

    Get PDF
    Abstract.: We apply the slave-boson approach of Kotliar and Ruckenstein to the two-band Hubbard model with an Ising like Hund's rule coupling and bands of different widths. On the mean-field level of this approach we investigate the Mott transition and observe both separate and joint transitions of the two bands depending on the choice of the inter- and intra-orbital Coulomb interaction parameters. The mean-field calculations allow for a simple physical interpretation and can confirm several aspects of previous work. Beside the case of two individually half-filled bands we also examine what happens if the original metallic bands possess fractional filling either due to finite doping or due to a crystal field which relatively shifts the atomic energy levels of the two orbitals. For appropriate values of the interaction and of the crystal field we can observe a band insulating state and a ferromagnetic meta

    Microscopic model for the magnetization plateaus in NH4CuCl3

    Full text link
    A simple model consisting of three distinct dimer sublattices is proposed to describe the magnetism of NH4CuCl3. It explains the occurrence of magnetization plateaus only at 1/4 and 3/4 of the saturation magnetization. The field dependence of the excitation modes observed by ESR measurements is also explained by the model. The model predicts that the magnetization plateaus should disappear under high pressure.Comment: 4 pages, 5 figures, REVTeX

    Ehrenfest relations and magnetoelastic effects in field-induced ordered phases

    Full text link
    Magnetoelastic properties in field-induced magnetic ordered phases are studied theoretically based on a Ginzburg-Landau theory. A critical field for the field-induced ordered phase is obtained as a function of temperature and pressure, which determine the phase diagram. It is found that magnetic field dependence of elastic constant decreases discontinuously at the critical field, Hc, and that it decreases linearly with field in the ordered phase (H>Hc). We found an Ehrenfest relation between the field dependence of the elastic constant and the pressure dependence of critical field. Our theory provides the theoretical form for magnetoelastic properties in field- and pressure-induced ordered phases.Comment: 7 pages, 3 figure
    • …
    corecore